1
|
Iftakher A, Monjur MS, Hasan MMF. An Overview of Computer‐aided Molecular and Process Design. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ashfaq Iftakher
- Texas A&M University Artie McFerrin Department of Chemical Engineering 100 Spence St. TX 77843-3122 College Station USA
| | - Mohammed Sadaf Monjur
- Texas A&M University Artie McFerrin Department of Chemical Engineering 100 Spence St. TX 77843-3122 College Station USA
| | - M. M. Faruque Hasan
- Texas A&M University Artie McFerrin Department of Chemical Engineering 100 Spence St. TX 77843-3122 College Station USA
| |
Collapse
|
2
|
|
3
|
Advancements in Optimization and Control Techniques for Intensifying Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9122150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Process Intensification (PI) is a vast and growing area in Chemical Engineering, which deals with the enhancement of current technology to enable improved efficiency; energy, cost, and environmental impact reduction; small size; and better integration with the other equipment. Since process intensification results in novel, but complex, systems, it is necessary to rely on optimization and control techniques that can cope with such new processes. Therefore, this review presents some advancements in the field of process intensification that are worthy of exploring in detail in the coming years. At the end, several important open questions that can be taken into consideration in the coming years are listed.
Collapse
|
4
|
On Process Intensification through Membrane Storage Reactors. SEPARATIONS 2021. [DOI: 10.3390/separations8110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, a dynamic, one-dimensional, first principle-based model of a novel membrane storage reactor (MSR) process is developed and simulated. The resulting governing equations are rendered dimensionless and are shown to feature two dimensionless groups that can be used to affect process performance. The novel process is shown to intensify production of a desired species through the creation of two physically distinct domains separated by a semipermeable boundary, and dynamic operation. A number of metrics are then introduced and applied to a case study on Steam Methane Reforming, for which a parametric study is carried out which establishes the superior performance of the MSR when compared to a reactor operating at steady state (SSR).
Collapse
|
5
|
Tian Y, Pappas I, Burnak B, Katz J, Pistikopoulos EN. A Systematic Framework for the synthesis of operable process intensification systems – Reactive separation systems. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Lowd J, Tsotsis TT, Manousiouthakis VI. On process intensification through storage reactors: A case study on methane steam reforming. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Baldea M, Hasan MMF, Boukouvala F. Preface for Special Issue on Frameworks for Process Intensification and Modularization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|