1
|
Nevolianis T, Wolter N, Kaven LF, Krep L, Huang C, Mhamdi A, Mitsos A, Pich A, Leonhard K. Kinetic Modeling of a Poly( N-vinylcaprolactam- co-glycidyl methacrylate) Microgel Synthesis: A Hybrid In Silico and Experimental Approach. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Nevolianis
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062Aachen, Germany
| | - Nadja Wolter
- DWI - Leibniz Institute for Interactive Materials e.V., 52074Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074Aachen, Germany
| | - Luise F. Kaven
- Chair of Process Systems Engineering, RWTH Aachen University, 52074Aachen, Germany
| | - Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062Aachen, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062Aachen, Germany
| | - Adel Mhamdi
- Chair of Process Systems Engineering, RWTH Aachen University, 52074Aachen, Germany
| | - Alexander Mitsos
- Chair of Process Systems Engineering, RWTH Aachen University, 52074Aachen, Germany
- JARA-SOFT, 52056Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials e.V., 52074Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062Aachen, Germany
| |
Collapse
|
2
|
Can the Kuznetsov Model Replicate and Predict Cancer Growth in Humans? Bull Math Biol 2022; 84:130. [PMID: 36175705 PMCID: PMC9522842 DOI: 10.1007/s11538-022-01075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Several mathematical models to predict tumor growth over time have been developed in the last decades. A central aspect of such models is the interaction of tumor cells with immune effector cells. The Kuznetsov model (Kuznetsov et al. in Bull Math Biol 56(2):295–321, 1994) is the most prominent of these models and has been used as a basis for many other related models and theoretical studies. However, none of these models have been validated with large-scale real-world data of human patients treated with cancer immunotherapy. In addition, parameter estimation of these models remains a major bottleneck on the way to model-based and data-driven medical treatment. In this study, we quantitatively fit Kuznetsov’s model to a large dataset of 1472 patients, of which 210 patients have more than six data points, by estimating the model parameters of each patient individually. We also conduct a global practical identifiability analysis for the estimated parameters. We thus demonstrate that several combinations of parameter values could lead to accurate data fitting. This opens the potential for global parameter estimation of the model, in which the values of all or some parameters are fixed for all patients. Furthermore, by omitting the last two or three data points, we show that the model can be extrapolated and predict future tumor dynamics. This paves the way for a more clinically relevant application of mathematical tumor modeling, in which the treatment strategy could be adjusted in advance according to the model’s future predictions.
Collapse
|
3
|
Santana VV, Martins MAF, Rodrigues AE, Loureiro JM, Ribeiro AM, Nogueira IBR. Abnormal Operation Tracking through Big-Data-Based Gram–Schmidt Orthogonalization: Production of n-Propyl Propionate in a Simulated Moving-Bed Reactor: A Case Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vinicius V. Santana
- Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Programa de Pós-Graduação em Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2-Federação, 40210-630 Salvador/Bahia, Brazil
| | - Márcio A. F. Martins
- Programa de Pós-Graduação em Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2-Federação, 40210-630 Salvador/Bahia, Brazil
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José M. Loureiro
- Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana M. Ribeiro
- Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Idelfonso B. R. Nogueira
- Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Jung F, Ksiazkiewicz A, Mhamdi A, Pich A, Mitsos A. Model-Based Optimization of Microgel Synthesis in the μm Size Range. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Falco Jung
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Adel Mhamdi
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrij Pich
- DWI Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Alexander Mitsos
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| |
Collapse
|
5
|
Schneider S, Jung F, Mergel O, Lammertz J, Nickel AC, Caumanns T, Mhamdi A, Mayer J, Mitsos A, Plamper FA. Model-based design and synthesis of ferrocene containing microgels. Polym Chem 2020. [DOI: 10.1039/c9py00494g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modelling and synthesis go hand in hand to efficiently engineer copolymer microgels with various architectures: core–shell structures (with ferrocene mainly in the core or in the shell) and also microgels with homogeneous comonomer distribution.
Collapse
Affiliation(s)
- Sabine Schneider
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Falco Jung
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Olga Mergel
- Department of Biomedical Engineering-FB40
- University of Groningen
- University Medical Center Groningen
- Groningen
- The Netherlands
| | - Janik Lammertz
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Anne C. Nickel
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Adel Mhamdi
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Joachim Mayer
- GFE Central Facility for Electron Microscopy
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
- Institute of Physical Chemistry
| |
Collapse
|