1
|
Yan M, Shao D. Application of different lights in solving the marine biofouling problem of uranium extraction from seawater. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113114. [PMID: 39879700 DOI: 10.1016/j.jphotobiol.2025.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as V. alginolyticus), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.
Collapse
Affiliation(s)
- Meng Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Matsubara K, Takahashi K, Matsuda T, Ueki Y, Seko N, Kakuchi R. GFN-xTB-Based Computations Provide Comprehensive Insights into Emulsion Radiation-Induced Graft Polymerization. Chempluschem 2024; 89:e202300480. [PMID: 37906113 DOI: 10.1002/cplu.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
In this article, a deep insight into emulsion radiation-induced graft polymerization (RIGP) was obtained by computing explicit solvation free energies, conformational entropy, monomer radius and dipole moments with the state-of-the-art Conformer-Rotamer Ensemble Sampling Tool (CREST) package primarily at semiempirical GFN-xTB level. By leveraging the robustness of the CREST package, above parameters provided dynamic nature of methacrylate monomers with the consideration of realistic emulsion conditions. With the chemical and physical importance of the above results, CREST-determined explanatory variables sufficiently led to the building of the prediction models for the RIGP of methacrylate monomers. The machine learning model building resulted in effective reactivity predictions and unveiled important factors for the radiation-induced graft polymerization in a chemically interpretable fashion.
Collapse
Affiliation(s)
- Kiho Matsubara
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
| | - Kei Takahashi
- Faculty of Information Engineering, Fukuoka Institute of Technology, 3-30-1, Wajiro-higashi, Higashiku, Fukuoka, 811-0295, Japan
- School of Statistical Thinking, The Institute of Statistical Mathematics, Midoricyo10-3, Tachikawa-City, Tokyo, 190-8562, Japan
| | - Takeshi Matsuda
- Faculty of Management and Information, Hannan University, 5-4-33, Amami, Higashi, Matsubara, Osaka, 580-8502, Japan
| | - Yuji Ueki
- Department of Advanced Functional Materials Research, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki, Gunma, 370-1292, Japan
| | - Noriaki Seko
- Department of Advanced Functional Materials Research, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki, Gunma, 370-1292, Japan
| | - Ryohei Kakuchi
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
3
|
Wang Z, Meng X, Du Z, Wang S, Qu C, Mo H, Jiang C, Wang J, Zang Y, Chen S. Zinc loaded amidoxime polyacrylonitrile porous resin microcapsules for uranium extraction from seawater. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Yang L, Qiao B, Zhang S, Yao H, Cai Z, Han Y, Li C, Li Y, Ma S. Intercalation of salicylaldoxime into layered double hydroxide: ultrafast and highly selective uptake of uranium from different water systems via versatile binding modes. J Colloid Interface Sci 2023; 642:623-637. [PMID: 37028169 DOI: 10.1016/j.jcis.2023.03.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
We report the first example of MgAl layered double hydroxide intercalated with salicylaldoxime (SA-LDH) which exhibits excellent uranium (U(VI)) capture performance. In U(VI) aqueous solutions, the SA-LDH shows a tremendous maximum U(VI) sorption capacity (qmU) of 502 mg·g-1, surpassing most known sorbents. For the aqueous solution with an initial U(VI) concentration (C0U) of ∼ 10 ppm, ≥99.99 % uptake is achieved in a wide pH range of 3-10. At C0U ∼ 20 ppm, >99 % uptake is reached within only 5 min, and pseudo-second-order kinetics rate constant (k2) of 44.9 g·mg-1·min-1 reaches the record value, placing the SA-LDH amongst the fastest U adsorbing materials reported to date. In contaminated seawater with 35 ppm of U while highly concentrated metal ions of Na+, Mg2+, Ca2+, and K+, the SA-LDH still displays exceptionally high selectivity and ultrafast extraction for UO22+, giving >95 % uptake of U(VI) within 5 min, and the k2 value of 0.308 g·mg-1·min-1 for seawater surpasses most reported values for aqueous solutions. Versatile binding modes toward U by SA-LDH, including complexation (UO22+ with SA- and/or CO32-), ion exchange and precipitation, contribute to the preferable uptake of U at different concentrations. X-ray absorption fine structure (XAFS) analyses demonstrate that one uranyl ion (UO22+) binds to two SA- anions and two H2O molecules forming 8-coordinated configuration. The U coordinates with O atom of the phenolic hydroxyl group and N atom of the -CN-O- group of SA-, forming a stable six-membered ring motif, which endows the fast and robust capture of U. The wonderful uranium trapping ability makes the SA-LDH among the best adsorbent used for uranium extraction from various solution systems including seawater.
Collapse
|
5
|
Preparation of porous amidoximated nanofibers with antibacterial properties, and experiments on uranium extraction from seawater. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Xie Y, Liu Z, Geng Y, Li H, Wang N, Song Y, Wang X, Chen J, Wang J, Ma S, Ye G. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem Soc Rev 2023; 52:97-162. [PMID: 36448270 DOI: 10.1039/d2cs00595f] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Zeyu Liu
- AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Hao Li
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. .,China Academy of Engineering Physics, Mianyang 621900, China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanpei Song
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Xiaolin Wang
- China Academy of Engineering Physics, Mianyang 621900, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Electron beam irradiation assisted preparation of UHMWPE fiber with 3D cross-linked structure and outstanding creep resistance. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Fu M, Ao J, Ma L, Kong D, Qi S, Zhang P, Xu G, Wu M, Ma H. Uranium removal from waste water of the tailings with functional recycled plastic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Mi Z, Zhang D, Wang J, Bi S, Liu J, Gao X, Zhang D, Jiang Y, Li Z, Zhu Y, Liu Z. Polyamidoxime grafting on ultrahigh-strength cellulose-based jute fabrics for effectively extracting uranium from seawater. NEW J CHEM 2022. [DOI: 10.1039/d1nj06072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrahigh-strength cellulose-based jute fabric (jute–TMC–PAO) for the highly effective extraction of uranium from seawater.
Collapse
Affiliation(s)
- Zhiming Mi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dexing Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Junman Wang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Shiman Bi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiyu Gao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Dawei Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute Chemical Technology, Jilin City 132022, China
| | - Yuanping Jiang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zuojia Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yean Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Zhixiao Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
10
|
Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci Bull (Beijing) 2021; 66:1994-2001. [PMID: 36654169 DOI: 10.1016/j.scib.2021.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
Uranium extraction from seawater is of strategic significance for nuclear power generation. Amidoxime-based functional adsorbents play indispensable roles in the recovery of seawater uranium with high efficiency. Nevertheless, balancing the adsorption capacity and selectivity is challenging in the presence of complicated interfering ions especially vanadium. Herein, a polyarylether-based covalent organic framework functionalized with open-chain amidoxime (COF-HHTF-AO) was synthesized with remarkable chemical stability and excellent crystallinity. Impressively, the adsorption capacity of COF-HHTF-AO towards uranium in natural seawater reached up to 5.12 mg/g, which is 1.61 times higher than that for vanadium. Detailed computational calculations revealed that the higher selectivity for uranium over vanadium originated from the specific bonding nature and coordination pattern with amidoxime. Combining enhanced adsorption capacity, excellent selectivity and ultrahigh stability, COF-HHTF-AO serves as a promising adsorbent for uranium extraction from the natural seawater.
Collapse
|
11
|
Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci Bull (Beijing) 2021; 66:1994-2001. [DOI: doi.org/10.1016/j.scib.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
12
|
He N, Li H, Li L, Cheng C, Lu X, Wen J, Wang X. Polyguanidine-modified adsorbent to enhance marine applicability for uranium recovery from seawater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126192. [PMID: 34492956 DOI: 10.1016/j.jhazmat.2021.126192] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The marine applicability of adsorbents intended for recovering uranium from seawater is crucial. For such applicability, the materials must exhibit anti-biofouling properties, seawater pH adaptability (pH~8), and salt tolerance. Extracting uranium from seawater is a long-term project; hence, biofouling, high salt concentrations, and weak alkaline environments negatively affect the adsorption of uranium and damage the recovered materials. Most studies on the extraction of uranium from seawater focus on increasing the adsorption capacity of the employed adsorbent, while its marine applicability is neglected. In the present study, three types of guanidine polymer (GP)-modified acrylic fibers were prepared to investigate the impact of the introduced structure on the marine applicability of the fibers. After screening, the introduction of polyhexamethylene biguanidine (PHMB) is observed to produce PAO-PHMB-A, characterized by excellent marine applicability. The enhanced properties include high antimicrobial activity (109 CFU/mL, 99.71%), good salt tolerance, and optimal adsorption at a pH of 8. Owing to the synergistic effect of its functional groups, the PAO-PHMB-A material exhibits excellent adsorption performance (525.89 mg/g), as well as high selectivity and durability. More importantly, long-term marine tests revealed that PAO-PHMB-A shows a remarkable uranium adsorption capacity (30 d, 3.19 mg/g) and excellent antibacterial activity. Considering its excellent marine applicability and good adsorption performance, the PAO-PHMB-A material developed in this work could serve as a potential adsorbent for engineering applications associated with uranium recovery from seawater.
Collapse
Affiliation(s)
- Ningning He
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Hao Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Luyan Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chong Cheng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xirui Lu
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Xiaolin Wang
- China Academy of Engineering Physics, Mianyang 621900, China.
| |
Collapse
|
13
|
Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Ye F, Huang C, Jiang X, He W, Gao X, Ma L, Ao J, Xu L, Wang Z, Li Q, Li J, Ma H. Reusable fibrous adsorbent prepared via Co-radiation induced graft polymerization for iodine adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111021. [PMID: 32888607 DOI: 10.1016/j.ecoenv.2020.111021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Volatile iodine released from nuclear power plant reactors is radiological hazard to environment and human's health because of their high fission yield and environmental mobility. The complexity of nuclear waste management motivated the development of solid-phase adsorbents. Herein, co-radiation induced graft polymerization (CRIGP) was employed in the graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polyethylene-coated polypropylene skin-core (PE/PP) fibers using electron beam (EB) irradiation. This work provides a one-step green synthetic approach to prepare iodine fibrous adsorbents without any chemical initiators or large amount of organic solvent. The original and modified PE/PP fibers were characterized by fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and scanning electron microscopy (SEM) to demonstrate the grafting of NVP onto the PE/PP fibers. The capacity of iodine absorbed by the PE/PP-g-PNVP fibers was 1237.8 mg/g after 180 min. Meanwhile, absorbents can be regenerated efficiently by two different means of ethanol elution and heating at 120 °C, respectively. Within 10 min, 94.17% and 90.12% of the iodine can be released from the PE/PP-g-PNVP fibers with these two methods, respectively. The adsorbent exhibited a long service life of at least ten adsorption-desorption cycles, suggesting that PE/PP-g-PNVP fibers might be a promising adsorbent for volatile iodine adsorption from fission products in nuclear power plant reactors.
Collapse
Affiliation(s)
- Feng Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | | | - Wen He
- Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- Qilu Institute of Technology, Jinan, 250200, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingye Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
15
|
Yuan Y, Feng S, Feng L, Yu Q, Liu T, Wang N. A Bio‐inspired Nano‐pocket Spatial Structure for Targeting Uranyl Capture. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Shiwei Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Tingting Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| |
Collapse
|
16
|
Ao J, Han J, Xu X, Qi S, Ma L, Wang Z, Zhang L, Li Q, Xu L, Ma H. Enhanced Performance in Uranium Extraction by Quaternary Ammonium-Functionalized Amidoxime-Based Fibers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiaguang Han
- Guangxi Key laboratory of Optoeletronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Shumao Qi
- Jining University, Qufu 273155, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
17
|
Ueki Y, Seko N. Synthesis of Fibrous Metal Adsorbent with a Piperazinyl-Dithiocarbamate Group by Radiation-Induced Grafting and Its Performance. ACS OMEGA 2020; 5:2947-2956. [PMID: 32095717 PMCID: PMC7033999 DOI: 10.1021/acsomega.9b03799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
A fibrous grafted metal adsorbent with a piperazinyl-dithiocarbamate (PZ-DTC) group was synthesized by radiation-induced emulsion grafting of glycidyl methacrylate onto a polyethylene-coated polypropylene nonwoven fabric (PE/PP-NF) and subsequent three-step chemical modifications consisting of amination with N-(tert-butoxycarbonyl)piperazine (N-Boc-piperazine, NBPZ), deprotection of the Boc group with HCl, and dithiocarbamation with carbon disulfide (CS2). By using the NBPZ reagent in the amination step, the self-cross-linking of piperazine (PZ) could be completely suppressed, unlike using the PZ reagent. Consequently, the PZ-DTC group density of the fibrous grafted metal adsorbent synthesized through NBPZ attained 2.122 mmol-PZ-DTC/g-adsorbent, which was approximately 6 times higher than that of the metal adsorbent synthesized through PZ. The fibrous grafted metal adsorbent with the PZ-DTC group selectively adsorbed heavy metal ions over light metal ions. Furthermore, it exhibited high adsorption capacity, particularly for Cu2+. The Cu2+ adsorption capacity was determined to be 1.903 mmol-Cu2+/g-adsorbent by a batchwise adsorption test using a single-metal-ion aqueous solution at pH 6. The order of metal ion selectivity of the fibrous grafted metal adsorbent with the PZ-DTC group was Na+ < Mg2+, Ca2+, Co2+, Cd2+ < Pb2+ ≪ Cu2+, and Co2+ ≈ Ni2+ < Zn2+ ≪ Cu2+. In addition, the fibrous grafted metal adsorbent with the PZ-DTC group did not lose its metal adsorption function even under highly alkaline conditions (pH 15). It could recover Cu2+ efficiently and selectively from a high-concentration Na+ aqueous solution at this pH. The Cu2+ adsorption capacity of the fibrous grafted metal adsorbent with the PZ-DTC group was 0.754 mmol-Cu2+/g-adsorbent under a highly alkaline condition, a 10 M NaOH aqueous solution at pH 15. This value was approximately 2.4 times higher than that of the other grafted adsorbent with an amine-type functional group.
Collapse
Affiliation(s)
- Yuji Ueki
- Department of Advanced Functional
Materials Research, Takasaki Advanced Radiation Research Institute,
Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Noriaki Seko
- Department of Advanced Functional
Materials Research, Takasaki Advanced Radiation Research Institute,
Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
18
|
Yuan Y, Feng S, Feng L, Yu Q, Liu T, Wang N. A Bio‐inspired Nano‐pocket Spatial Structure for Targeting Uranyl Capture. Angew Chem Int Ed Engl 2020; 59:4262-4268. [DOI: 10.1002/anie.201916450] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Shiwei Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Tingting Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 P. R. China
| |
Collapse
|
19
|
Ao J, Zhang H, Xu X, Yao F, Ma L, Zhang L, Ye B, Li Q, Xu L, Ma H. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium. RSC Adv 2019; 9:28588-28597. [PMID: 35529616 PMCID: PMC9071111 DOI: 10.1039/c9ra05440e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023] Open
Abstract
A novel uranium-imprinted adsorbent (AO-Imp fiber) was prepared by radiation-induced crosslinking of amidoxime-functionalized ultra-high molecular weight polyethylene fiber (AO fiber). The porous structure was characterized by scanning electron microscopy (SEM) and positron annihilation lifetime (PAL) spectroscopy after ion imprinting. This ion-imprinted fiber exhibited enhanced adsorption selectivity for uranium in the form of both UO2 2- and [UO2(CO3)3]4- in batch experiments. Compared with AO fiber, the adsorption capacity of the AO-Imp(250) fiber for uranium increased from 0.36 mg g-1 to 1.00 mg g-1 in simulated seawater and from 5.02 mg g-1 to 12.03 mg g-1 in simulated acid effluent, while its adsorption capacities for other co-existing metal ions were particularly low. This study provides an approach to prepare ion-imprinted adsorbents without introducing crosslinking reagents, which may be a promising method for uranium extraction.
Collapse
Affiliation(s)
- Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongjun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | | | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Bangjiao Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|