1
|
Qin Y, Li L, Liu H, Han J, Wang H, Zhu X, Ge Q. Anionic oxyl radical formed on CrVI-oxo anchored on the defect site of the UiO-66 node facilitates methane to methanol conversion. J Chem Phys 2024; 160:134701. [PMID: 38557845 DOI: 10.1063/5.0201753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The direct conversion of methane to methanol has attracted increasing interest due to abundant and low-cost natural gas resources. Herein, by anchoring Cr-oxo/-oxyhydroxides on UiO-66 metal-organic frameworks, we demonstrate that reactive anionic oxyl radicals can be formed by controlling the coordination environment based on the results of density functional theory calculations. The anionic oxyl radicals produced at the completely oxidized CrVI site acted as the active species for facile methane activation. The thermodynamically stable CrVI-oxo/-oxyhydroxides with the anionic oxyl radicals catalyze the activation of the methane C-H bond through a homolytic mechanism. An analysis of the results showed that the catalytic performance of the active oxyl species correlates with the reaction energy of methane activation and H adsorption energies. Following methanol formation, N2O can regenerate the active sites on the most stable CrVI oxyhydroxides, i.e., the Cr(O)4Hf species. The present study demonstrated that the anionic oxyl radicals formed on the anchored CrVI oxyhydroxides by tuning the coordination environment enabled facile methane activation and facilitated methanol production.
Collapse
Affiliation(s)
- Yuyao Qin
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liwen Li
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huixian Liu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinyu Han
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| |
Collapse
|
2
|
Han Y, Xu J, Xie W, Wang Z, Hu P. Comprehensive Study of Oxygen Vacancies on the Catalytic Performance of ZnO for CO/H 2 Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS Catal 2023; 13:5104-5113. [PMID: 37123602 PMCID: PMC10127212 DOI: 10.1021/acscatal.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Indexed: 04/01/2023]
Abstract
Oxygen vacancies (OVs) play important roles on any oxide catalysts. In this work, using an investigation of the OV effects on ZnO(101̅0) for CO and H2 activation as an example, we demonstrate, via machine learning potentials (MLPs), genetic algorithm (GA)-based global optimization, and density functional theory (DFT) validations, that the ZnO(101̅0) surface with 0.33 ML OVs is the most likely surface configuration under experimental conditions (673 K and 2.5 MPa syngas (H2:CO = 1.5)). It is found that a surface reconstruction from the wurtzite structure to a body-centered-tetragonal one would occur in the presence of OVs. We show that the OVs create a Zn3 cluster site, allowing H2 homolysis and C-O bond cleavage to occur. Furthermore, the activity of intrinsic sites (Zn3c and O3c sites) is almost invariable, while the activity of the generated OV sites is strongly dependent on the concentration of the OVs. It is also found that OV distributions on the surface can considerably affect the reactions; the barrier of C-O bond dissociation is significantly reduced when the OVs are aligned along the [12̅10] direction. These findings may be general in the systems with metal oxides in heterogeneous catalysis and may have significant impacts on the field of catalyst design by regulating the concentration and distribution of the OVs.
Collapse
|
3
|
Liu Y, Zong X, Patra A, Caratzoulas S, Vlachos DG. Propane Dehydrogenation on Pt xSn y ( x, y ≤ 4) Clusters on Al 2O 3(110). ACS Catal 2023. [DOI: 10.1021/acscatal.2c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yilang Liu
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Xue Zong
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Abhirup Patra
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Stavros Caratzoulas
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Li R, Zhang C, Li S, Du Y. Experimental and theoretical investigations into propane dehydrogenation over MIL-101(Cr/Al) derived catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Zhang Y, Chen X, Ali AM, Zhang H. Screening of transition metal doped two-dimensional C2N (TM-C2N) as high-performance catalyst for the non-oxidative propane dehydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Song S, Yang K, Zhang P, Wu Z, Li J, Su H, Dai S, Xu C, Li Z, Liu J, Song W. Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Kun Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Peng Zhang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
7
|
Shan YL, Sun HL, Zhao SL, Tang PL, Zhao WT, Ding JW, Yu WL, Li LN, Feng X, Chen D. Effects of Support and CO 2 on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Ling Shan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huai-Lu Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Lei Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Long Tang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Ting Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun-Wei Ding
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen-Long Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
8
|
Fonzeu Monguen CK, El Kasmi A, Arshad MF, Kouotou PM, Daniel S, Tian ZY. Oxidative Dehydrogenation of Propane into Propene over Chromium Oxides. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cedric Karel Fonzeu Monguen
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Achraf El Kasmi
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory LSIA UAE/U02ENSAH, ENSAH, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Muhammad Fahad Arshad
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Patrick Mountapmbeme Kouotou
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46, Maroua, Cameroon
| | - Samuel Daniel
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Yu Tian
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Qi L, Babucci M, Zhang Y, Lund A, Liu L, Li J, Chen Y, Hoffman AS, Bare SR, Han Y, Gates BC, Bell AT. Propane Dehydrogenation Catalyzed by Isolated Pt Atoms in ≡SiOZn-OH Nests in Dealuminated Zeolite Beta. J Am Chem Soc 2021; 143:21364-21378. [PMID: 34881868 DOI: 10.1021/jacs.1c10261] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.
Collapse
Affiliation(s)
- Liang Qi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yanfei Zhang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alicia Lund
- College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lingmei Liu
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yizhen Chen
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexis T Bell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Monai M, Gambino M, Wannakao S, Weckhuysen BM. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 2021; 50:11503-11529. [PMID: 34661210 DOI: 10.1039/d1cs00357g] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marianna Gambino
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Sippakorn Wannakao
- SCG Chemicals Co., Ltd, 1 Siam-Cement Rd, Bang sue, Bangkok 1080, Thailand
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
12
|
Huš M, Kopač D, Bajec D, Likozar B. Effect of Surface Oxidation on Oxidative Propane Dehydrogenation over Chromia: An Ab Initio Multiscale Kinetic Study. ACS Catal 2021; 11:11233-11247. [PMID: 34513204 PMCID: PMC8422962 DOI: 10.1021/acscatal.1c01814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Indexed: 11/28/2022]
Abstract
An increasingly utilized way for the production of propene is propane dehydrogenation. The reaction presents an alternative to conventional processes based on petroleum resources. In this work, we investigate theoretically how Cr2O3 catalyzes this reaction in oxidative and reducing environments. Although previous studies showed that the reduced catalyst is selective for the non-oxidative dehydrogenation of propane, real operating conditions are oxidative. Herein, we use multiscale modeling to investigate the difference between the oxidized and reduced catalyst and their performance. The complete reaction pathway for propane dehydrogenation, including C-C cracking, formation of side products (propyne, ethane, ethylene, acetylene, and methane), and catalyst coking on oxidized and reduced surfaces of α-Cr2O3(0001), is calculated using density functional theory with the Hubbard correction. Parameters describing adsorption, desorption, and surface reactions are used in a kinetic Monte Carlo simulation, which employed industrially relevant conditions (700-900 K, pressures up to 2 bar, and varying oxidants: N2O, O2, and none). We observe that over the reduced surface, propene and hydrogen form with high selectivity. When oxidants are used, the surface is oxidized, which changes the reaction mechanism and kinetics. During a much faster reaction, H2O forms as a coproduct in a Mars-van Krevelen cycle. Additionally, CO2 is also formed, which represents waste and adversely affects the selectivity. It is shown that the oxidized surface is much more active but prone to the formation of CO2, while the reduced surface is less active but highly selective toward propene. Moreover, the effect of the oxidant used is investigated, showing that N2O is preferred to O2 due to higher selectivity and less catalyst coking. We show that there exists an optimum degree of surface oxidation, where the yield of propene is maximized. The coke, which forms during the reaction, can be burnt away as CO2 with oxygen.
Collapse
Affiliation(s)
- Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000 Ljubljana, Slovenia
| | - Drejc Kopač
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - David Bajec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal11091070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.
Collapse
|
14
|
Yang T, Zhong Y, Li J, Ma R, Yan H, Liu Y, He Y, Li D. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33045-33055. [PMID: 34232010 DOI: 10.1021/acsami.1c07842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is an important task to develop low-cost and anticoking catalysts for the propane dehydrogenation (PDH) reaction. In this work, the P element is introduced to the Ru-based catalyst to obtain Ru sites with a unique structure and the obtained RuxPy (x/y = 2:1, 1:1, 1:2) catalysts are then employed in PDH. Density functional theory (DFT) results show that the addition of P leads to the formation of separated Ru sites and the adjustment of the valance band state of Ru. The upward shift of the d-band center leads to a reduction of the reaction energy barrier for dehydrogenation of propane and an enhancement of catalytic activity. The analysis of the competition between propylene deep dehydrogenation and propylene desorption for each catalyst shows that desorption of propylene is preferred on the RuP(112) surface. Considering both catalytic activity and propylene selectivity, the RuP catalyst is potential for the propane dehydrogenation reaction. On the RuP surface, the PDH reaction proceeds by the dehydrogenation of the H atom on the methylene group (isopropyl pathway), thus restraining the deep dehydrogenation of propylene. The RuxPy catalysts are also synthesized in experiments, and PDH evaluation shows that the RuP structure is a remarkable PDH catalyst with a stable structure, anticoking ability, and low cost.
Collapse
Affiliation(s)
- Tianxing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Zhong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiale Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Zeeshan M, Chang Q, Zhang J, Hu P, Sui Z, Zhou X, Chen D, Zhu Y. Effects of Oxygen Vacancy and Pt Doping on the Catalytic Performance of
CeO
2
in Propane Dehydrogenation: A
First‐Principles
Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Zeeshan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qing‐Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jun Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ping Hu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhi‐Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xing‐Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology N‐7491 Trondheim Norway
| | - Yi‐An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
16
|
Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Chang QY, Wang KQ, Sui ZJ, Zhou XG, Chen D, Yuan WK, Zhu YA. Rational Design of Single-Atom-Doped Ga 2O 3 Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing-Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai-Qi Wang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Wei-Kang Yuan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
19
|
Xiao L, Xie Z, Song S, Zhao Z, Ke M, Song W, Zhao Z, Liu J. Descriptor-Guided Design and Experimental Synthesis of Metal-Doped TiO 2 for Propane Dehydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liqi Xiao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| | - Zhiping Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, P. R. China
| |
Collapse
|
20
|
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 2021; 50:5590-5630. [DOI: 10.1039/d0cs01260b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal and metal oxide catalysts for non-oxidative ethane/propane dehydrogenation are outlined with respect to catalyst synthesis, structure–property relationship and catalytic mechanism.
Collapse
Affiliation(s)
- Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Gao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaojuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
21
|
Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chang Q, Wang K, Hu P, Sui Z, Zhou X, Chen D, Yuan W, Zhu Y. Dual‐function catalysis in propane dehydrogenation over
Pt
1
–Ga
2
O
3
catalyst: Insights from a microkinetic analysis. AIChE J 2020. [DOI: 10.1002/aic.16232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qing‐Yu Chang
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Kai‐Qi Wang
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Ping Hu
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Zhi‐Jun Sui
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Xing‐Gui Zhou
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - De Chen
- Department of Chemical EngineeringNorwegian University of Science and Technology Trondheim Norway
| | - Wei‐Kang Yuan
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| | - Yi‐An Zhu
- United Chemical Reaction Engineering Research Institute (UNILAB), State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology Shanghai China
| |
Collapse
|
23
|
He Y, Yang Z, Liu Z, Wang P, Guo M, Ran J. Research on the Selectivity and Activity of Ethane Oxidation Dehydrogenation with CO
2
on Cr‐based Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.201904842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu He
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- School of Energy and Power EngineeringChongqing University Chongqing 400044 China
| | - Zhongqing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- School of Energy and Power EngineeringChongqing University Chongqing 400044 China
| | - Zhilei Liu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- School of Energy and Power EngineeringChongqing University Chongqing 400044 China
| | - Peng Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- School of Energy and Power EngineeringChongqing University Chongqing 400044 China
| | - Mingnv Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- College of Mechanical and Power EngineeringChongqing University of Science and Technology Chongqing 400044 China
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRCChongqing University Chongqing 400044 China
- School of Energy and Power EngineeringChongqing University Chongqing 400044 China
| |
Collapse
|
24
|
Ma F, Chang QY, Yin Q, Sui ZJ, Zhou XG, Chen D, Zhu YA. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00609b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Descriptor-based microkinetic analysis is performed to screen single-atom-doped ZnO for PDH, and Mn1- and Cu1–ZnO prove to be good candidates.
Collapse
Affiliation(s)
- Fang Ma
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qing-Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qiang Yin
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - De Chen
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- N-7491 Trondheim
- Norway
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
25
|
Broadbelt L, Gautam P, Bielenberg J. NASCRE-4 Editorial. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|