1
|
Zhang J, Ge Q. Recycling scale inhibitor wastes into pH-responsive complexes to treat wastewater produced from spent lithium-ion battery disposal. WATER RESEARCH 2024; 260:121939. [PMID: 38901308 DOI: 10.1016/j.watres.2024.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
A large amount of organophosphorus-containing wastewater is produced in spent lithium-ion battery disposal. Forward osmosis (FO) offers unique advantages in purifying this kind of wastewater if suitable draw solutes - the core of FO technology, are available. Herein we synthesize several pH-sensitive zinc complexes, namely ZnATMP-iNa (i = 0, 1, 2, 3, 4), from ZnSO4 and amino tris(methylene phosphonic acid) (ATMP) obtained from scale inhibitor wastes for organophosphorus-containing wastewater remediation. Among these ZnATMP-iNa, ZnATMP-3Na best meets the standards of an ideal draw solute. This makes ZnATMP-3Na outperform other reported draw solutes. 0.6 M ZnATMP-3Na produces a water flux of 12.7 LMH, 136 % higher than that of NaCl and a solute loss of 0.015 g/L, lower than that of NH4HCO3 (0.83 g/L). In organophosphorus-containing wastewater treatment, ZnATMP-3Na has higher water recovery efficiency (8.3 LMH) and sustainability than NaCl and NH4HCO3, and is sufficient to handle large quantities of wastewater. Remarkably, the pH-responsive property allows ZnATMP-3Na to be readily recovered through pH-control and reused in FO. The ionic property, expanded cage-like structure and easy-recycling make ZnATMP-3Na achieve sustainable FO separation and superior to other draw solutes. This study provides inspiration for draw solute design from wastes and extends FO application to organophosphorus-containing wastewater remediation.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China.
| |
Collapse
|
2
|
Moon J, Kang H. Effect of cation alkyl chain length on 3-sulfopropylmethacrylate-based draw solutes having lower critical solution temperature. RSC Adv 2023; 13:8291-8298. [PMID: 36926002 PMCID: PMC10011973 DOI: 10.1039/d2ra08068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
We investigated the effect of change in alkyl chain length of cation in tributylalkylphosphonium 3-sulfopropyl methacrylate ([P444#][C3S], # = 4, 6, and 8) ionic liquids (ILs) on their osmolality and recovery properties as the draw solute in the forward osmosis (FO) process. The ILs aqueous solutions exhibited a characteristic of the lower critical solution temperature (LCST)-type phase separation, which allowed for the easy recovery of the draw solute or clean water from the diluted draw solution. The LCSTs of 31, 26, 22, and 18 °C were obtained from 2.5, 5.0, 7.5, and 10.0 wt% aqueous solutions of [P4446][C3S]. When deionized water, 2000 ppm NaCl solution, and 10.0 wt% orange juice aqueous solution were used as feed solution, the water fluxes of the aqueous [P4446][C3S] solutions were approximately 4.49, 3.87, and 1.55 LMH, respectively, in the active layer facing the draw solution mode at 7.5 wt% of draw solution. This study demonstrates the applicability of a thermoresponsive ionic structure material as a draw solute for the FO process.
Collapse
Affiliation(s)
- Jihyeon Moon
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University 37 Nakdong-Daero 550 Beon-gil, Saha-gu Busan 49315 Republic of Korea +82 51 200 7728 +82 51 200 7720
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University 37 Nakdong-Daero 550 Beon-gil, Saha-gu Busan 49315 Republic of Korea +82 51 200 7728 +82 51 200 7720
| |
Collapse
|
3
|
Reddy AS, Wanjari VP, Singh SP. Design, synthesis, and application of thermally responsive draw solutes for sustainable forward osmosis desalination: A review. CHEMOSPHERE 2023; 317:137790. [PMID: 36626951 DOI: 10.1016/j.chemosphere.2023.137790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) is an emerging sustainable desalination technology; however, it is not a stand-alone process and requires an additional step to recover the water or regenerate the draw solute (DS), making it energy extensive. Therefore, incorporating inexpensive energy sources for DS regeneration is a viable solution to compete with reverse osmosis desalination technology. Hence, selecting suitable DS and its regeneration became a crucial research focus in FO desalination. Among various DSs reported, thermally responsive DSs (TRDS) provide an opportunity to integrate low-grade energy sources for DS regeneration. Utilizing such inexpensive energy will reduce fossil fuel energy demand, lower the cost of desalination, and minimize the carbon footprint. Hence, this review explores the TRDS for FO-based desalination with its design, synthesis, and applications. The manuscript has discussed the classification and selection criteria for the DSs, and how traditional and new-generation TRDSs are designed and synthesized from cationic and anionic moieties of ionic liquids, hydrogels, and other chemicals. The manuscript has also given importance to design criteria such as osmotic strength, viscosity, toxicity, and thermal stability for TRDSs. Furthermore, a detailed discussion on the FO performance, energy, and economic aspects of TRDSs has been reviewed, along with a discussion on the possible low-grade energy sources for the recovery of TRDS. Finally, the challenges and future directions for TRDSs have been discussed to drive FO toward sustainable desalination technology.
Collapse
Affiliation(s)
- A Sudharshan Reddy
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram P Wanjari
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Thermoresponsive Ionic Liquid with Different Cation-Anion Pairs as Draw Solutes in Forward Osmosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248869. [PMID: 36558001 PMCID: PMC9781059 DOI: 10.3390/molecules27248869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
We synthesized various phosphonium- and ammonium-based ionic liquids (ILs), using benzenesulfonate (BS) and 4-methylbenzenesulfonate (MBS) to establish the criteria for designing an ideal draw solute in a forward osmosis (FO) system. Additionally, the effects of monocationic, dicationic, and anionic species on FO performance were studied. Monocationic compounds ([P4444][BS], [P4444][MBS], [N4444][BS], and [N4444][MBS]) were obtained in one step via anion exchange. Dicationic compounds ([(P4444)2][BS], [(P4444)2][MBS], [(N4444)2][BS], and [(N4444)2][MBS]) were prepared in two steps via a Menshutkin SN2 reaction and anion exchange. We also investigated the suitability of ILs as draw solutes for FO systems. The aqueous [P4444][BS], [N4444][BS], [N4444][MBS], and [(N4444)2][BS] solutions did not exhibit thermoresponsive behavior. However, 20 wt% [P4444][MBS], [(P4444)2][BS], [(P4444)2][MBS], and [(N4444)2][MBS] had critical temperatures of approximately 43, 33, 22, and 60 °C, respectively, enabling their recovery using temperature. An increase in IL hydrophobicity and bulkiness reduces its miscibility with water, demonstrating that it can be used to tune its thermoresponsive properties. Moreover, the FO performance of 20 wt% aqueous [(P4444)2][MBS] solution was tested for water flux and found to be approximately 10.58 LMH with the active layer facing the draw solution mode and 9.40 LMH with the active layer facing the feed solution.
Collapse
|
5
|
Moon J, Seo K, Kang H. Effect of the Structural Changes in a Styrenesulfonate-Based Draw Solute Having a Lower Critical Solution Temperature for the Forward Osmosis Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jihyeon Moon
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550 Beon-Gil, Saha-Gu, Busan49315, Republic of Korea
| | - Kyutae Seo
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550 Beon-Gil, Saha-Gu, Busan49315, Republic of Korea
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, 37 Nakdong-Daero 550 Beon-Gil, Saha-Gu, Busan49315, Republic of Korea
| |
Collapse
|
6
|
Cho Y, Kang H. Effect of the Alkyl Chain Length on Assessment as Thermo-Responsive Draw Solutes for Forward Osmosis. ACS OMEGA 2022; 7:41508-41518. [PMID: 36406486 PMCID: PMC9670907 DOI: 10.1021/acsomega.2c05279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A series of thermo-responsive tetrabutylphosphonium 1-alkanesulfonates (abbreviated as [P4444][C n S], n = 6, 8, 10, and 12), where n is the number of carbon atoms in the alkyl group on the 1-alkanesulfonate anion, were prepared by an ion-exchange reaction to investigate their potential ability toward the application of draw solutes in forward osmosis (FO). We systematically studied the recovery properties and FO performance of [P4444][C n S]. This series exhibited lower critical solution temperature (LCST) characteristics, which offer a clear advantage of being energy-efficient for recovering draw solutes; however, [P4444][C6S] was only observed at 20 wt %. The LCSTs of the 20 wt % [P4444][C6S], [P4444][C8S], [P4444][C10S], and [P4444][C12S] draw solutions were approximately 83, 54, 49, and 56 °C, respectively. Moreover, when the orientation of the active layer was heading toward the draw solution (AL-DS mode), the water and reverse solute flux of [P4444][C10S] were about 1.58 LMH and 0.81 gMH, respectively, at 20 wt % aqueous solutions. When the membrane was used in the active layer facing the feed solution (AL-FS) system, the water and reverse solute flux of [P4444][C10S] were approximately 0.71 LMH and 0.38 gMH, respectively, at 20 wt % aqueous solutions. Thus, this study is the first to examine the structural transformations of the bulkier alkyl group on the sulfonate anion moiety and its feasibility as the new draw solute for the FO system.
Collapse
Affiliation(s)
| | - Hyo Kang
- . Tel.: +82 51 200 7720. Fax: +82 51 200 7728
| |
Collapse
|
7
|
Xu Y, Wang YN, Chong JY, Wang R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. WATER RESEARCH 2022; 221:118768. [PMID: 35752097 DOI: 10.1016/j.watres.2022.118768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Recently, thermo-responsive nonionic amphiphilic copolymers have shown a great potential as forward osmosis (FO) draw solutes for high-salinity water desalination and zero-liquid discharge (ZLD). However, the relationship between the copolymer structural properties and key characteristics as draw solutes, as well as copolymer's chemical stability after regeneration have not been much studied. In this work, we systematically investigated poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) copolymers as draw solute. The results showed that the PEO segments significantly influenced the viscosity, osmotic pressure and lowest phase separation temperature of the copolymer aqueous solutions. Among four commercial copolymers studied, Pluronic® L35 with moderate molecular weight (Mn 1,900 Da), 50% PEO, and relatively high hydrophilic-lipophilic balance (HLB) showed the best draw solution (DS) performance. It also showed great stability in physiochemical properties and draw capacity after more than ten cycles of regeneration. On the other hand, despite the fact that membrane fouling was observed due to the use of copolymer DS, the FO flux (∼1.2 L m‒2 h‒1, as similar with the virgin membrane) was not affected when high-salinity feedwater such as seawater RO brine was applied. Overall, our study has provided a more comprehensive understanding on the characteristics of nonionic amphiphilic copolymer DS and showcased the promise of copolymer-driven FO process in high-salinity water desalination and ZLD.
Collapse
Affiliation(s)
- Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Kamio E, Kurisu H, Takahashi T, Matsuoka A, Yoshioka T, Nakagawa K, Sun Y, Matsuyama H. Effect of temperature on the osmotic behavior of LCST type ionic liquid solutions as draw solutions in the forward osmosis process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kamio E, Kurisu H, Takahashi T, Matsuoka A, Yoshioka T, Nakagawa K, Matsuyama H. Using Reverse Osmosis Membrane at High Temperature for Water Recovery and Regeneration from Thermo-Responsive Ionic Liquid-Based Draw Solution for Efficient Forward Osmosis. MEMBRANES 2021; 11:588. [PMID: 34436351 PMCID: PMC8399973 DOI: 10.3390/membranes11080588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.
Collapse
Affiliation(s)
- Eiji Kamio
- Research Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (E.K.); (H.K.); (T.T.); (A.M.)
| | - Hiroki Kurisu
- Research Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (E.K.); (H.K.); (T.T.); (A.M.)
| | - Tomoki Takahashi
- Research Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (E.K.); (H.K.); (T.T.); (A.M.)
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (E.K.); (H.K.); (T.T.); (A.M.)
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.N.); (T.Y.)
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.N.); (T.Y.)
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (E.K.); (H.K.); (T.T.); (A.M.)
| |
Collapse
|
10
|
Kishimoto M, Gonzales RR, Goda S, Yasukawa M, Kumano A, Kamio E, Kumagai K, Matsuyama H. Simulation of Thermoresponsive Draw Solute-Driven Forward Osmosis for Enhanced Pure Water Production in Seawater Desalination. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michimasa Kishimoto
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Shohei Goda
- Membrane Research and Development Center, Toyobo Company Ltd., 2-1-1 Katata, Otsu, Shiga 520-0292, Japan
| | - Masahiro Yasukawa
- Membrane Research and Development Center, Toyobo Company Ltd., 2-1-1 Katata, Otsu, Shiga 520-0292, Japan
| | - Atsuo Kumano
- Desalination Membrane Department, Toyobo Company Ltd., 2-8 Dojima Hama 2-chome, Kita-ku, Osaka 530-8230, Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Inada A, Kumagai K, Matsuyama H. Effect of the molecular weights of thermoresponsive polyalkylene glycol draw solutes on forward osmosis performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|