1
|
Chen C, Du S, Taylor JM, Huang J, Evans CM, Braun PV. Visualizing ion transport in polymers via ion-chromic indicators. ACS Macro Lett 2023; 12:86-92. [PMID: 36595317 DOI: 10.1021/acsmacrolett.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is growing interest in polymers with high ionic conductivity for applications including batteries, fuel cells, and separation membranes. However, measuring ion diffusion in polymers can be challenging, requiring complex procedures and instrumentation. Here, a simple strategy to study ion diffusion in polymers is presented that utilizes ion-chromic spiropyan as an indicator to measure the diffusion of LiTFSI, KTFSI, and NaTFSI within poly(ethylene oxide)-based polymer networks. These systems are selected, as these are common ions and polymers used in energy storage applications, however, the approach described is not specific to materials for energy storage. Specifically, to enabling the study of ion diffusion, these salts cause the spiropyran to undergo an isomerization reaction, which results in a significant color change. This colorimetric response enables the determination of the diffusion coefficients of these ions within films of these polymers simply by optically tracking the spatial-temporal evolution of the isomerization product within the film and fitting the data to the relevant diffusion equations. The simplicity of the method makes it amenable to the study of ion diffusion in polymers under a range of conditions, including various temperatures and under macroscopic deformation.
Collapse
Affiliation(s)
- Chen Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Sifei Du
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Jay M Taylor
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Junrou Huang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Christopher M Evans
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Paul V Braun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States.,Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
2
|
Hirota Y, Hayami S, Sasaki F, Matoba S, Yokoi K, Nishiyama N. Effects of the Si–O–Si Network Structure on the Permeation Properties of Silylated Ionic Liquid-Derived Membranes. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuichiro Hirota
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology
| | - Shohei Hayami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Fumiya Sasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Shotaro Matoba
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Kazuki Yokoi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
5
|
Shan N, Shen C, Evans CM. Critical Role of Ion Exchange Conditions on the Properties of Network Ionic Polymers. ACS Macro Lett 2020; 9:1718-1725. [PMID: 35653674 DOI: 10.1021/acsmacrolett.0c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic polymers are important in a wide range of applications and can exhibit widely different properties depending on the ionic species. In the case of single ion conducting polymers, where one charge is attached to the backbone or as a side group, ion exchange is performed to control the mobile species. While the conditions are often specified, the final ion content is not always quantified, and there are no clear criteria for what concentration of salt is needed in the exchange. A series of ammonium network ionic polymers with different precise carbon spacers (C4-C7) between ionic junctions were synthesized as model systems to understand how the ion exchange conditions impact the resultant polymer properties. The initial networks with free bromide anions were exchanged with 1.5, 3, or 10 equiv of lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt in solution. For networks with seven carbons between cross-links, increasing the LiTFSI concentration led to an increase in ion exchange efficiency from 83.6 to 97.6 mol %. At the highest conversion, the C7 network showed a 4 °C decrease in glass transition temperature (Tg), a 50 °C increase in degradation temperature, 12-fold lower water uptake from air, and a greater than 10-fold increase in conductivity at 90 °C. These results illustrate that properties such as Tg are less sensitive to residual ion impurities, whereas the conductivity is highly dependent on the final exchange conversion.
Collapse
Affiliation(s)
- Naisong Shan
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengtian Shen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Shen C, Zhao Q, Shan N, Jing BB, Evans CM. Conductivity–modulus–
T
g
relationships in solvent‐free, single lithium ion conducting network electrolytes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengtian Shen
- Department of Chemistry University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Qiujie Zhao
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Naisong Shan
- Department of Chemistry University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Brian B. Jing
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Christopher M. Evans
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|