1
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
2
|
Cai X, Zhang Z, Cai L, Tian X, Chu W, Yang W. Effect of Calcination Atmosphere on the Structure and Catalytic Behavior of Cr 2O 3/Al 2O 3 Catalysts for Dehydrogenation of Propane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Cai
- Mudanjiang Normal University, Mudanjiang157011, China
| | - Zitong Zhang
- Mudanjiang Normal University, Mudanjiang157011, China
| | - Lili Cai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, Liaoning116023, China
| | - Xiaoyan Tian
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Wenling Chu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, Liaoning116023, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, Liaoning116023, China
| |
Collapse
|
3
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Bian K, Zhang G, Zhu J, Wang X, Wang M, Lou F, Liu Y, Song C, Guo X. Promoting Propane Dehydrogenation with CO 2 over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kai Bian
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiang Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Feijian Lou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
6
|
Qiu Z, Wang Y, Di Y, Ren X, Liu W, Li Z, Li G. One-step conversion of lignin-derived alkylphenols to light arenes by co-breaking of C–O and C–C bonds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05793f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selectivity for light arenes, including benzene and toluene, in the conversion of 4-ethylphenol reaches 55.7% with 84.0% selectivity for arenes.
Collapse
Affiliation(s)
- Zegang Qiu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi’an 710065, P. R. China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi’an 710065, P. R. China
| | - Yali Di
- Beijing System Design Institute of Mechanical-Electrical Engineering, Beijing 100854, China
| | - Xiaoxiong Ren
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi’an 710065, P. R. China
| | - Weiwei Liu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi’an 710065, P. R. China
| | - Zhiqin Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi’an 710065, P. R. China
| | - Guangyu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Zhang H, Zou X, Wang X, Xie H, Jiao Z, Lu X. Surface hydroxyl groups: the key to a CrO x/TiO 2 catalyst for efficient catalytic oxidation of 2,2′-hydrazine diisobutyronitrile. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface hydroxyl groups could contribute to the formation of Cr–O–Ti bonds on the surface of the CrOx/TiO2 catalyst, which thus promote the oxidation of 2,2′-hydrazobis-isobutyronitrile.
Collapse
Affiliation(s)
- Hu Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Company Limited, Zhejiang 310003, China
| | - Zheng Jiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
C3N Non-metallic Catalyst for Propane Dehydrogenation: A Density Functional Theory Study. Catal Letters 2021. [DOI: 10.1007/s10562-021-03564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
The role of CO2 in the dehydrogenation of n-octane using Cr-Fe catalysts supported on MgAl2O4. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Abstract
In the past several decades, light alkane dehydrogenation to mono-olefins, especially propane dehydrogenation to propylene has gained widespread attention and much development in the field of research and commercial application. Under suitable conditions, the supported Pt-Sn and CrOx catalysts widely used in industry exhibit satisfactory dehydrogenation activity and selectivity. However, the high cost of Pt and the potential environmental problems of CrOx have driven researchers to improve the coking and sintering resistance of Pt catalysts, and to find new non-noble metal and environment-friendly catalysts. As for the development of the reactor, it should be noted that low operation pressure is beneficial for improving the single-pass conversion, decreasing the amount of unconverted alkane recycled back to the reactor, and reducing the energy consumption of the whole process. Therefore, the research direction of reactor improvement is towards reducing the pressure drop. This review is aimed at introducing the characteristics of the dehydrogenation reaction, the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the development of catalyst and reactor.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China.
| | | |
Collapse
|
11
|
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 2021; 50:5590-5630. [DOI: 10.1039/d0cs01260b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal and metal oxide catalysts for non-oxidative ethane/propane dehydrogenation are outlined with respect to catalyst synthesis, structure–property relationship and catalytic mechanism.
Collapse
Affiliation(s)
- Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Gao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaojuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
12
|
Otroshchenko T, Jiang G, Kondratenko VA, Rodemerck U, Kondratenko EV. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem Soc Rev 2021; 50:473-527. [DOI: 10.1039/d0cs01140a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of propane or isobutane from natural/shale gas into propene or isobutene, which are indispensable for the synthesis of commodity chemicals, is an important environmentally friendly alternative to oil-based cracking processes.
Collapse
Affiliation(s)
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum, Beijing
- Beijing
- P. R. China
| | | | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V
- D-18059 Rostock
- Germany
| | | |
Collapse
|