1
|
Moeinifar Z, Shayanmehr M, Ghaemi A. A comprehensive review on desulfurization adsorbents from light sour naphtha. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5703-5729. [PMID: 39982671 DOI: 10.1007/s11356-025-36112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This review highlights the different adsorbents used for desulfurization of light naphtha with regard to regenerability, selectivity, and scalability in industrial processes. The sulfur compounds in the petroleum derivatives should be removed from the products for minimization of their adverse effects on the environment, for enhancing fuel quality, and meeting the international requirements. A systematic review is done of zeolites, metal oxides, activated carbon, and other types of adsorbents. Zeolites, with their porous structure and tunable pore size, exhibit high selectivity for sulfur compounds such as thiophenes and benzothiophenes. Activated carbon, due to its large surface area and customizable properties, is capable of adsorbing a wide variety of sulfur compounds. One of the most important challenges is regenerability and reusability of adsorbents. According to various research, zeolites and some metal oxides regained their functionality after repeated adsorption-desorption cycles, which have advantages in industrial applications. Carbon-based adsorbents also show thermal and chemical stability and, hence, can be used in multiple regeneration cycles. Adsorbents not only have to perform well at an industrial scale but also have to be cost-effective. Metal oxides can be produced at low costs and are thus suitable for large-scale applications. They show promising results in the laboratory, but further research has to be done to evaluate their stability and cost efficiency at larger scales. In this regard, process optimization of operating parameters such as temperature, pressure, and solvent use can strikingly enhance desulfurization efficiency and reduce operating costs.
Collapse
Affiliation(s)
- Zahra Moeinifar
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohsen Shayanmehr
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
2
|
He D, Cao D, You Y, Ben C, Wu S, Wu Q, Liu D, Song XM, Song Z, Meng QB. Mesoporous Silica Supported Hydrophilic Ionic Liquid Gel Microspheres for Solvent-Free Deep Oxidative Desulfurization. NANO LETTERS 2024; 24:13607-13614. [PMID: 39432100 DOI: 10.1021/acs.nanolett.4c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Solvent-free oxidative desulfurization can avoid environmental pollution caused by organic solvents as well as prevent loss of fuel during the oil-water separation process. In this work, first, hydrophilic ionic liquid gel microspheres with [BMIM]BF4 and PHEMA as the dispersion medium and gel network, respectively, were successfully prepared by using mesoporous silica microspheres as a supporting skeleton capable of stabilizing the gel through an anchoring effect, and then the catalyst [BMIM]PW and oxidant H2O2 were incorporated into the gel microspheres to construct a liquid compartment microreactor for deep desulfurization. The prepared microreactor (SiO2@[BMIM]PW/ILG-microspheres) has excellent extraction-catalytic capacity and exhibited ∼100% desulfurization ratio for a model oil of n-heptane with 500 ppm of DBT at 60 °C for 3 h without solvents. Additionally, the prepared microreactor can absorb hydrophilic desulfurization products after the reaction and has advantages of reusability and simple recovery without polluting the fuel oil, which is beneficial for potential petroleum industrial application.
Collapse
Affiliation(s)
- Dongqing He
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Dezhou Cao
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yuanxiang You
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Chuxuan Ben
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shuyao Wu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qiong Wu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daliang Liu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhining Song
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qing Bo Meng
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
3
|
Green and efficient removal of sulfides using oxo-peroxo tungsten(VI)-MIL-101(Cr) nanoreactor as heterogeneous recyclable catalyst. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
HPW/PAM Catalyst for Oxidative Desulfurization-Synthesis, Characterization and Mechanism Study. Processes (Basel) 2022. [DOI: 10.3390/pr10020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, polyacrylamide (PAM) was first used in the loading of heteropoly acids, and then the HPM/PAM-n catalyst was synthesized by simple reaction. The FTIR and SEM measurements showed that the HPM/PAM-n (n = 10,000, 20,000, 30,000) was successfully synthesized. In addition, the HPM/PAM-n effect on desulfurization was measured, which showed the optimal desulfurization efficiency. The optimal process condition for HPM/PAM-10000 desulfurization was optimized by a single-factor experiment. The optimal condition was as follows: The temperature was 60 °C, the amount of the catalyst was 0.2 g, the oxygen to sulfur ratio was 16, and the reaction time is 100 min. The catalyst was suitable for recycled use, and the desulfurization efficiency was high after 10 times. In the end, the oxidative desulfurization mechanism was put forward.
Collapse
|
6
|
Wu P, Sun Y, Chen L, Jia Q, He J, Ma W, Lu L, Chao Y, Fan L, Zhu W. Heteroatom Bridging Strategy in Carbon-Based Catalysts for Enhanced Oxidative Desulfurization Performance. Inorg Chem 2021; 61:633-642. [PMID: 34915701 DOI: 10.1021/acs.inorgchem.1c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon-based catalysts are found to be promising metal-free species for aerobic oxidative desulfurization of fuel oil. Thus, a proper approach to promote their catalytic performances is very much in demand. In this contribution, a heteroatom bridging strategy is proposed to enhance the catalytic activities of carbon-based catalysts. As proof of the strategy, a series of boron (B)-doped graphite catalysts were synthesized. Detailed characterizations showed that the hetero-B atoms were uniformly dispersed in graphite. More importantly, it was found that the doped B atoms functioned as a bridge for electron transfer. With the existence of the heteroatom bridge, the activation of oxygen by graphite during the catalytic oxidation process was enhanced remarkably, leading to an ultradeep oxidative desulfurization performance. Moreover, the catalyst can be readily recycled five times without a significant decrease in desulfurization performance.
Collapse
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Yang Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Linlin Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Qingdong Jia
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Wenhui Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Yanhong Chao
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
7
|
Akopyan AV, Polikarpova PD, Arzyaeva NV, Anisimov AV, Maslova OV, Senko OV, Efremenko EN. Model Fuel Oxidation in the Presence of Molybdenum-Containing Catalysts Based on SBA-15 with Hydrophobic Properties. ACS OMEGA 2021; 6:26932-26941. [PMID: 34693114 PMCID: PMC8529595 DOI: 10.1021/acsomega.1c03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
We have studied for the first time the role of hydrophobicity of the mesoporous silicate SBA-15 on the activity and the service life of a catalyst in the peroxide oxidation of sulfur-containing compounds. Immobilization of the molybdate anion on the SBA-15 support via ionic bonding with triethylammonium groups allows us not only to decrease the reaction temperature to a relatively low value of 60 °C without a drop in the dibenzothiophene conversion degree but also to increase the service life of the catalyst to many times that of the known analogs. The support and catalyst structures were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy. Immobilization of the molybdate anion on the SBA-15 support, modified with ammonium species, prevents the leaching of active sites. However, only alkyl-substituted ammonium species minimize DBT sulfone adsorption, which significantly increases the catalyst's service life. The synthesized catalyst Mo/Et3N-SBA-15 with hydrophobic properties is not sensitive to the initial sulfur content and hydrogen peroxide amount and retains its activity for at least six cycles of oxidation without regeneration. These catalysts can be efficiently used for clean fuel production.
Collapse
Affiliation(s)
- Argam V. Akopyan
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Polina D. Polikarpova
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Nina V. Arzyaeva
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander V. Anisimov
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga V. Maslova
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga V. Senko
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian
Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| | - Elena N. Efremenko
- Faculty
of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian
Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| |
Collapse
|
8
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
9
|
Akopyan AV, Kulikov LA, Polikarpova PD, Shlenova AO, Anisimov AV, Maximov AL, Karakhanov EA. Metal-Free Oxidative Desulfurization Catalysts Based on Porous Aromatic Frameworks. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Argam V. Akopyan
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Leonid A. Kulikov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Polina D. Polikarpova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anna O. Shlenova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander V. Anisimov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anton L. Maximov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- A.V.Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Eduard A. Karakhanov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
10
|
Fan J, Xie Z, Wang X, Shi T. Study on Oxidative Desulfurization of Simulated Oil Catalyzed With Glycine Modified Phosphotungstic Acid. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427220120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Akopyan A, Polikarpova P, Vutolkina A, Cherednichenko K, Stytsenko V, Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Oxidative desulfurization is a promising way to produce, under mild conditions, clean ecological fuels with ultra-low sulfur content. Herein, we present for the first time heterogeneous catalysts based on natural aluminosilicate nanotubes (halloysite) loaded with transition metal oxides for oxidative sulfur removal using hydrogen peroxide as environmentally safe oxidant. The halloysite nanotubes (HNTs) provide acid sites for C–S bond scission, while the Mo and W oxides act as hydrogen peroxide activators. The structure and acidity of both the clay support and catalysts were investigated by low-temperature nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray fluorescence analysis, and transmission electron microscopy techniques. These clay-based catalysts revealed the high activity in the oxidation of various classes of sulfur-containing compounds (sulfides, heteroatomic sulfur compounds) under mild reaction conditions. The conversion of various substrates decreases in the following trend: MeSPh > Bn2S > DBT > 4-MeDBT > BT, which deals with substrate electron density and steric hindrance. The influence of the temperature, oxidant to sulfur molar ratio, and reaction time on catalytic behavior was evaluated for Mo- and W-containing systems with various metal content. The complete oxidation of the most intractable dibenzothiophene to the corresponding sulfone was achieved at 80 °C and H2O2:S = 6:1 (molar) for 2 h both for Mo- and W-containing systems. These transition metal oxides HNTs supported catalysts are stable for 10 cycles of dibenzothiophene oxidation, which makes them promising systems for clean fuel production.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis , Faculty of Chemistry, Lomonosov Moscow State University , GSP-1, 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Valentine Stytsenko
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry , Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (NRU) , 65 Leninsky Prospekt , 119991 Moscow , Russia
| |
Collapse
|
12
|
Maslova O, Senko O, Stepanov N, Gladchenko M, Gaydamaka S, Akopyan A, Polikarpova P, Lysenko S, Anisimov A, Efremenko E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. BIORESOURCE TECHNOLOGY 2021; 319:124248. [PMID: 33254470 DOI: 10.1016/j.biortech.2020.124248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A new solution for fossil raw materials desulfurization based on a hybrid chemical-biocatalytic scheme with biogas and sulfide production is proposed.·H2O2, formic acid and Na2MoO4 were used for petroleum or oil fractions pre-oxidation. Ethanol or dimethylformamide was used as extractant to remove sulfur-contained compounds from pre-oxidized straight-run diesel oil fraction, non-hydro treated vacuum gas oil, gas condensate or crude oil. Compositions of cells (anaerobic sludge, Desulfovibrio vulgaris, Clostridium acetobutilycum, Rhodococcus ruber, Rhodococcus erythropolis) were specially developed, immobilized in poly(vinyl alcohol) cryogel and used for methanogenic treatment of sulfur-containing extracts, diluted with phosphate buffer (pH 7.2) and hydrolysates of renewable raw materials. The sulfur coming into the reactor with the extracts was 100% converted to inorganic sulfide or cell biomass. The ratio of methane in the biogas was 68-76%. Bioluminescent express-methods were used to control the possible toxicity of media and metabolic activity of cells used as biocatalysts.
Collapse
Affiliation(s)
- Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Marina Gladchenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Sergey Gaydamaka
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia
| | - Argam Akopyan
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Polina Polikarpova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Sergey Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Alexander Anisimov
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Kosygina st., 4, Russia.
| |
Collapse
|
13
|
Wang Y, Oyaizu K, Nishide H. Allylic hydrocarbon polymers complexed with Fe(II)(salen) as a ultrahigh oxygen-scavenging and active packaging film. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Macromolecular metal complexes provide a molecular-based synergy function of organic polymers and combined metal complexes. A new category of macromolecular complexes includes catalytically active metal complexes immobilized by organic polymers containing reactive substrate moieties in their repeating units. Here, we describe the extremely efficient oxidation of allylic hydrocarbon polymers with the attached iron complex catalyst, as well as the efficient oxygen-consumption or oxygen-scavenging function of the matrix polymer film. The less toxic N,N´-di(salicylaldehyde)ethylenediiminatoiron(II) complex was combined with or fixed onto a series of allylic hydrocarbon polymers as both the oxidative substrate and the film matrix, i.e. poly(1,2-butadiene), polynorbornene, poly(5-vinyl-2-norbornene), poly(2,5-norboenadiene), poly(dicyclopentadiene), and poly(5-ethylidene-2-norbornene). Ultra-high oxygen-scavenging capacity up to 300 mL (oxygen gas at STP)/g(film) was achieved, based on the oxidative consumption of the allylic bond (particularly of poly(5-ethylidene-2-norbornene)), which was more than three times that of the previously reported highest oxygen-scavenging polymers. These oxygen-scavenging films are based on the high reactivity of polymer-metal complexes that provides an innovative development in the area of active packaging polymer films that facilitate cost-effective performance, safety, and sustainability.
Collapse
Affiliation(s)
- Yu Wang
- Department of Applied Chemistry and Research Institute for Science and Engineering , Waseda University , Tokyo 169–8555 , Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering , Waseda University , Tokyo 169–8555 , Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and Engineering , Waseda University , Tokyo 169–8555 , Japan
| |
Collapse
|
14
|
Shakirov II, Boronoev MP, Sinikova NA, Karakhanov EA, Maksimov AL. Selective Hydrogenation of Phenylacetylene on a Pd-Containing Catalyst Based on a Polymer Layered Substrate. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|