1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Zhang Y, Feng XL, Ni JY, Fu B, Shen HM, She YB. Efficient Inhibition of Deep Conversion of Partial Oxidation Products in C-H Bonds' Functionalization Utilizing O 2 via Relay Catalysis of Dual Metalloporphyrins on Surface of Hybrid Silica Possessing Capacity for Product Exclusion. Biomimetics (Basel) 2024; 9:272. [PMID: 38786482 PMCID: PMC11117990 DOI: 10.3390/biomimetics9050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
To inhibit the deep conversion of partial oxidation products (POX-products) in C-H bonds' functionalization utilizing O2, 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin cobalt(II) and 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin copper(II) were immobilized on the surface of hybrid silica to conduct relay catalysis on the surface. Fluorocarbons with low polarity and heterogeneous catalysis were devised to decrease the convenient accessibility of polar POX-products to catalytic centers on the lower polar surface. Relay catalysis between Co and Cu was designed to utilize the oxidation intermediates alkyl hydroperoxides to transform more C-H bonds. Systematic characterizations were conducted to investigate the structure of catalytic materials and confirm their successful syntheses. Applied to C-H bond oxidation, not only deep conversion of POX-products was inhibited but also substrate conversion and POX-product selectivity were improved simultaneously. For cyclohexane oxidation, conversion was improved from 3.87% to 5.27% with selectivity from 84.8% to 92.3%, which was mainly attributed to the relay catalysis on the surface excluding products. The effects of the catalytic materials, product exclusion, relay catalysis, kinetic study, substrate scope, and reaction mechanism were also investigated. To our knowledge, a practical and novel strategy was presented to inhibit the deep conversion of POX-products and to achieve efficient and accurate oxidative functionalization of hydrocarbons. Also, a valuable protocol was provided to avoid over-reaction in other chemical transformations requiring high selectivity.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Xiao-Ling Feng
- Hangzhou Copiore Chemical Technology Co., Ltd., Hangzhou 310012, China;
| | - Jia-Ye Ni
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Bo Fu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Z.); (J.-Y.N.); (B.F.)
| |
Collapse
|
3
|
Zhou XY, Fu B, Jin WD, Wang X, Wang KK, Wang M, She YB, Shen HM. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics (Basel) 2023; 8:325. [PMID: 37504212 PMCID: PMC10807029 DOI: 10.3390/biomimetics8030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-Y.Z.); (B.F.); (W.-D.J.); (X.W.); (K.-K.W.); (M.W.); (Y.-B.S.)
| |
Collapse
|
4
|
Ni JY, He B, Huang H, Ning L, Liu QP, Wang KK, Wu HK, Shen HM, She YB. Cycloalkanes oxidation with O2 in high-efficiency and high-selectivity catalyzed by 3D MOFs with limiting domain and Zn(AcO)2 through synergistic mode. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Guo AB, Qin JW, Wang KK, Liu QP, Wu HK, Wang M, Shen HM, She YB. Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Ni JY, Cong SZ, Ning L, Wang M, Shen HM, She YB. Binary catalytic systems constructed by porphyrin cobalts(II) with confining nano-region and Zn(OAc)2 for oxygenation of cycloalkanes with O2 in relay mode. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Shen HM, Guo AB, Zhang Y, Liu QP, Qin JW, She YB. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Yuan E, Zhou M, Gu M, Jian P, Xia L, Xiao J. Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catal Letters 2021. [DOI: 10.1007/s10562-021-03638-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Shen HM, Wang X, Guo AB, Zhang L, She YB. Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The catalytic oxidation of cycloalkanes using molecular oxygen employing porphyrin cobalt(II) as catalyst was enhanced through use of cycloalkyl hydroperoxides, which are the primary intermediates in oxidation of cycloalkanes, as additional oxidants to further oxidize cycloalkanes in the presence of porphyrin copper(II), especially for cyclohexane, for which the selectivity was enhanced from 88.6 to 97.2% to the KA oil; at the same time, the conversion of cyclohexane was enhanced from 3.88 to 4.41%. The enhanced efficiency and selectivity were mainly attributed to the avoided autoxidation of cycloalkanes and efficient utilization of oxidation intermediate cycloalkyl hydroperoxides as additional oxidants instead of conventional thermal decomposition. In addition to cyclohexane, the protocol presented in this research is also very applicable in the oxidation of other cycloalkanes such as cyclooctane, cycloheptane and cyclopentane, and can serve as a applicable and efficient strategy to boost the conversion and selectivity simultaneously in oxidation of alkanes. This work also is a very important reference for the extensive application of metalloporphyrins in catalysis chemistry.
Collapse
Affiliation(s)
- Hai M. Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - A. Bing Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan B. She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|