1
|
Lin M, Shen J, Wang B, Chen Y, Zhang C, Qi H. Preparation of fluffy bimodal conjugated electrospun poly(lactic acid) air filters with low pressure drop. RSC Adv 2023; 13:30680-30689. [PMID: 37869388 PMCID: PMC10585197 DOI: 10.1039/d3ra05969c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Electrospun nanofiber membranes have been extensively studied as air filters. However, their limited filtration efficiency for submicron inhalable particulate matter (PM), high resistance to filtration, and limited capacity to hold dust have hindered their widespread use. The majority of materials come from petroleum, and the use of organic solvents during the spinning process has a significant negative impact on the environment. In this work, a sustainable method has been proposed for producing filters using poly(lactic acid) (PLA) with a bimodal diameter distribution through conjugated electrospinning. This technique allows for the continuous production of interconnected micro/nano hybrid porous membranes, resulting in reduced resistance and improved dust holding capacity. The filtration efficiency, pressure drop, long-term filtration performance, and actual performance of the conjugated bimodal membrane (CBM) were extensively investigated. The results indicate that the filter has a high capacity for retaining particles, with filtration efficiencies of 99.94% for PM 0.3 and 99.96% for PM 2.5. It also demonstrates a high quality factor (0.078 Pa-1 for PM 0.3 and 0.084 Pa-1 for PM 2.5), long-term stability (a decrease of 2.35% for PM 0.3 and 0.05% for PM 2.5 over a period of 60 days) and outstanding dust holding capacity (9.17 g m-2). The conjugated bimodal membrane (CBM) shows a 22.64% decrease in resistance compared to the non-conjugated bimodal membrane (BM). In general, the approach outlined in this work provides valuable insights into the development of high-performance biodegradable air filters. These filters have improved filtration efficiency and reduced resistance.
Collapse
Affiliation(s)
- Minggang Lin
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Jinlin Shen
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Bingbing Wang
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Yangyi Chen
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Chuyang Zhang
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| |
Collapse
|
2
|
Liu G, Liu L, Wang X, Yu J, Ding B. A Fiber Sliding-Orientation Based Micromechanics Failure Model for Melt-Blown Nonwovens. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14616-14625. [PMID: 37795881 DOI: 10.1021/acs.langmuir.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The mechanical model of melt-blown nonwovens (MNs) serves as the foundation for performance optimization, which can offer helpful guidance for product material selection, structural design, and cost control. However, it is challenging to describe the micromechanics failure mechanism of MNs using the traditional mechanical model, which aims to match the model curve with the experimental result at the macrolevel. Herein, a micromechanics failure model for MNs based on sliding-orientation competition is developed. Through in situ observations of fiber position changes and the fluctuation of stress-strain curves, fiber sliding and orientation are introduced into the failure process of MNs. Due to fiber bonding and static friction, only orientation happens during the first stage of stretching. In dramatic contrast, the fibers will slide and orient in the second stage of stretching to change their positions in response to the external force. Sliding friction, fiber bonding, and static friction make up the stress of MNs, and the conflict of fiber sliding and orientation causes variations in the stress. The model has been successfully applied to polylactic acid (PLA) MNs, which proves the effectiveness of the model in MNs.
Collapse
Affiliation(s)
- Gaohui Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Li Liu
- Tianfangbiao Standardization Certification and Testing Co., Ltd., Tianjin 300300, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Gungor M, Selcuk S, Toptas A, Kilic A. Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution. ACS OMEGA 2022; 7:46602-46612. [PMID: 36570188 PMCID: PMC9773963 DOI: 10.1021/acsomega.2c05449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A bimodal web, where both nanofibers and microfibers are present and distributed randomly across the same web, can deliver high filter efficiency and low pressure drop at the same time since in such a web, filter efficiency is high thanks to small pores created by the presence of nanofibers and the interfiber space created by the presence of microfibers, which is large enough for air to flow through with little resistance. In this work, a bimodal polyamide 6 (PA6) filter web was fabricated via a modified solution blowing (m-SB) technique that produced nanofibers and microfibers simultaneously. Scanning electron microscope (SEM) images of the webs were used to analyze the fiber morphology. Additionally, air permeability, solidity, porosity, filtration performance, and tensile strength of the samples were measured. The bimodal filter web consisted of nanofibers and microfibers with average diameters of 81.5 ± 127 nm and 1.6 ± 0.458 μm, respectively. Its filter efficiency, pressure drop at 95 L min-1, and tensile strength were 98.891%, 168 Pa, and 0.1 MPa, respectively. Its quality factor (QF) and tensile strength were 0.0268 Pa-1 and 0.1 MPa, respectively. When compared with commercially available filters, the bimodal web produced had superior filter performance, constituting a suitable alternative for air filter applications.
Collapse
Affiliation(s)
- Melike Gungor
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Areka
Advanced Technologies Ltd. Co., Istanbul34467, Turkey
| | - Sule Selcuk
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
| | - Ali Toptas
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Safranbolu
Vocational School, Karabuk University, Karabuk78050, Turkey
| | - Ali Kilic
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Areka
Advanced Technologies Ltd. Co., Istanbul34467, Turkey
| |
Collapse
|
4
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
6
|
Cavalcante EHM, de Oliveira HP. Magnetite‐doped electrospun fibers for
DNA
adsorption. J Appl Polym Sci 2022. [DOI: 10.1002/app.53198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Helinando Pequeno de Oliveira
- Institute of Materials Science Federal University of São Francisco Valley, Avenida Antônio Carlos Magalhães Juazeiro Brazil
| |
Collapse
|
7
|
Freire LA, Lemos ACC, Miranda KWE, da Silva JP, de Oliveira JE. Statistical optimization for preparing nanofibrous mats of polybutylene adipate co‐terephthalate/poly(vinylpyrrolidone) blends by solution blow spinning. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leonardo Almeida Freire
- Department of Engineering (DEG) Federal University of Lavras (UFLA) Lavras Minas Gerais Brazil
| | - Ana Carolina Cortez Lemos
- Postgraduate Program in Biomaterials Engineering Federal University of Lavras Lavras Minas Gerais Brazil
| | | | | | | |
Collapse
|
8
|
Zhen Q, Zhang H, Sun H, Zhang Y. Tailoring the softness performance of polyethylene/polypropylene micro‐nanofibrous fabrics for skin contacts. J Appl Polym Sci 2022. [DOI: 10.1002/app.51530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qi Zhen
- School of Clothing Zhongyuan University of Technology Zhengzhou China
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Heng Zhang
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Huan‐Wei Sun
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| | - Yi‐Feng Zhang
- School of Textiles Zhongyuan University of Technology Zhengzhou China
- Institute of Advanced Medical Polymers Henan Key Laboratory Medical Polymer Materials Technology and Application Xinxiang China
| |
Collapse
|
9
|
Banerji A, Jin K, Mahanthappa MK, Bates FS, Ellison CJ. Porous Fibers Templated by Melt Blowing Cocontinuous Immiscible Polymer Blends. ACS Macro Lett 2021; 10:1196-1203. [PMID: 35549054 DOI: 10.1021/acsmacrolett.1c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a scalable melt blowing method for producing porous nonwoven fibers from model cocontinuous polystyrene/high-density polyethylene polymer blends. While conventional melt compounding of cocontinuous blends typically produces domain sizes ∼1-10 μm, melt blowing these blends into fibers reduces those dimensions up to 35-fold and generates an interpenetrating domain structure. Inclusion of ≤1 wt % of a block copolymer compatibilizer in these blends crucially enables access to smaller domain sizes in the fibers by minimizing thermodynamically-driven blend coarsening inherent to cocontinuous blends. Selective solvent extraction of the sacrificial polymer phase yielded a network of porous channels within the fibers. Fiber surfaces also exhibited pores that percolate into the fiber interior, signifying the continuous and interconnected nature of the final structure. Pore sizes as small as ∼100 nm were obtained, suggesting potential applications of these porous nonwovens that rely on their high surface areas, including various filtration modules.
Collapse
Affiliation(s)
- Aditya Banerji
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kailong Jin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Beloshenko V, Chishko V, Plavan V, Rezanova N, Savchenko B, Sova N, Vozniak I. Production of Filter Material from Polypropylene/Copolyamide Blend by Material Extrusion-Based Additive Manufacturing: Role of Production Conditions and ZrO 2 Nanoparticles. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:253-262. [PMID: 36654834 PMCID: PMC9828615 DOI: 10.1089/3dp.2020.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of technological conditions of the process and zirconia (ZrO2) nanoparticles on the properties of fine-fibrous filter materials (FMs) obtained by matrix polymer extraction from a microfibrillar composite formed using the material extrusion-based additive manufacturing method from a polypropylene (PP)/copolyamide blend is studied. Different processing schemes were used for obtaining filaments for material extrusion: scheme I-the use of a single-screw extruder at the stage of compounding; scheme II-the use of a single-screw extruder at the stage of compounding and orientational stretching in the course of strand formation; scheme III-the use of a twin-screw extruder at the stage of compounding, scheme IV-the addition of ZrO2 nanoparticles and use of a twin-screw extruder. It has been shown the possibility of reducing the diameters of the formed in situ PP microfibrils by using the twin-screw extruder, as well as additional orientation drawing. The introduction into the melt of ZrO2 nanoparticles provides further improvement of the microstructure-the average diameter of the microfibrils is reduced by 1.4 times compared with the initial blend. Developed FMs are characterized by high efficiency of air purification from solid particles with a size of 0.3 μm. At the same time, the use of nanoadditives is the most effective-a two-layer FM with nanoparticles provides cleaning efficiency at the level of four- to six-layer materials without filler.
Collapse
Affiliation(s)
- Victor Beloshenko
- Department of Physical Materials Science, Donetsk Institute for Physics and Engineering Named After O.O. Galkin, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vyacheslav Chishko
- Department of Physical Materials Science, Donetsk Institute for Physics and Engineering Named After O.O. Galkin, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Viktoria Plavan
- Department of Applied Ecology, Technology of Polymers and Chemical Fibers, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Natalia Rezanova
- Department of Applied Ecology, Technology of Polymers and Chemical Fibers, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Bogdan Savchenko
- Department of Applied Ecology, Technology of Polymers and Chemical Fibers, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Nadiya Sova
- Department of Applied Ecology, Technology of Polymers and Chemical Fibers, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Iurii Vozniak
- Polymer Division, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
11
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|