1
|
Łątka P, Olszański B, Żurowska M, Dębosz M, Rokicińska A, Kuśtrowski P. Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media. Molecules 2024; 29:960. [PMID: 38474471 DOI: 10.3390/molecules29050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In this work, a synthesis and activation path, which enabled the preparation of spherical activated carbon from a lignin precursor, characterized by high adsorption capacity in the removal of phenolic compounds from water, was successfully developed. Two industrial by-products, i.e., Kraft lignin and sodium lignosulfonate, were used to form spherical nanometric lignin grains using pH and solvent shift methods. The obtained materials became precursors to form porous activated carbons via chemical activation (using K2CO3 or ZnCl2 as activating agents) and carbonization (in the temperature range of 600-900 °C). The thermal stabilization step at 250 °C was necessary to ensure the sphericity of the grains during high-temperature heat treatment. The study investigated the influence of the type of chemical activator used, its quantity, and the method of introduction into the lignin precursor, along with the carbonization temperature, on various characteristics including morphology (examined by scanning electron microscopy), the degree of graphitization (evaluated by powder X-ray diffraction), the porosity (assessed using low-temperature N2 adsorption), and the surface composition (analyzed with X-ray photoelectron spectroscopy) of the produced carbons. Finally, the carbon materials were tested as adsorbents for removing phenol from an aqueous solution. A conspicuous impact of microporosity and a degree of graphitization on the performance of the investigated adsorbents was found.
Collapse
Affiliation(s)
- Piotr Łątka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Bazyli Olszański
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Żurowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, St. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek Dębosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Zhao B, Borghei M, Zou T, Wang L, Johansson LS, Majoinen J, Sipponen MH, Österberg M, Mattos BD, Rojas OJ. Lignin-Based Porous Supraparticles for Carbon Capture. ACS NANO 2021; 15:6774-6786. [PMID: 33779142 PMCID: PMC8155330 DOI: 10.1021/acsnano.0c10307] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles. Overall, we demonstrate porous SP carbon systems of low cost (precursor, fabrication, and processing) and superior activity (gas sorption and capture).
Collapse
Affiliation(s)
- Bin Zhao
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Maryam Borghei
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Tao Zou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Ling Wang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Leena-Sisko Johansson
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
- Bioproduct
Institute, Departments of Chemical & Biological Engineering, Chemistry,
and Wood Science, The University of British
Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Cao KLA, Rahmatika AM, Kitamoto Y, Nguyen MTT, Ogi T. Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J Colloid Interface Sci 2020; 589:252-263. [PMID: 33460856 DOI: 10.1016/j.jcis.2020.12.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The tailored synthesis of carbon particles with controllable shapes and structures from biomass as a raw material would be highly beneficial to meet the demands of various applications of carbon materials from the viewpoint of sustainable development goals. In this work, the spherical carbon particles were successfully synthesized through a spray drying method followed by the carbonization process, using Kraft lignin as the carbon source and potassium hydroxide (KOH) as the activation agent. As the results, the proposed method successfully controlled the shape and structure of the carbon particles from dense to hollow by adjusting the KOH concentration. Especially, this study represents the first demonstration that KOH plays a crucial role in the formation of particles with good sphericity and dense structures. In addition, to obtain an in-depth understanding of the particle formation of carbon particles, a possible mechanism is also investigated in this article. The resulting spherical carbon particles exhibited dense structures with a specific surface area (1233 m2g-1) and tap density (1.46 g cm-3) superior to those of irregular shape carbon particles.
Collapse
Affiliation(s)
- Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Annie Mufyda Rahmatika
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan; Department of Biotechnology and Veterinary, Vocational School, Gadjah Mada University, Sekip Unit 1 Catur Tunggal, Depok Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 72711, Viet Nam
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|