1
|
Sanchez-Castrillon S, Benítez LN, Vazquez-Arenas J, Ferraro F, Palma-Goyes RE. Reaction Mechanism of Oxytetracycline Degradation by Electrogenerated Reactive Chlorine: The Influence of Current Density and pH. ACS OMEGA 2024; 9:46302-46311. [PMID: 39583723 PMCID: PMC11579939 DOI: 10.1021/acsomega.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
A binary dimensionally stable anode Ti/TiO2-RuO2 electrode was used to abate the antibiotic oxytetracycline (OTC) (C22H24N2O9) in chloride water. The anode was prepared using the Pechini method and subsequently characterized by X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and cyclic voltammetry (CV). The optimum values of the operational parameters affecting removal efficiency were determined using a 2 × 3 factorial design by screening j (6.0, 10, and 20 A m-2) and pH (3, 6.5, and 10). The textural analysis revealed the formation of active oxides (RuO2 and TiO2 coating rutile-type P42/mnm, space group 136), with a cracked surface and good dispersion of metal components. A contour graph verified that the most suitable condition for contaminant degradation was 20 A m-2 at a circumneutral pH of 6.5, resulting in approximately 97% degradation after 20 min of electrolysis according to pseudo-first-order reaction kinetics and the loss of the antibiotic activity of OTC. In addition, the results of oxidant formation and CV indicate that the best electrochemical activation of the anode to form Cl2-active mainly depended on pH. Liquid chromatography-mass spectrometry (LC-MS) and density functional theory were employed to propose a reaction pathway for OTC degradation. Three byproducts with m/z 426, 256, and 226 were identified corresponding to the removal of amide and amine groups, which are susceptible sites to electrophilic attack by active chlorine species. The findings from this work stand out for prospective applications of anodic electrochemical oxidation to efficiently eliminate antibiotics with similar chemical structures in wastewater containing chlorides.
Collapse
Affiliation(s)
| | - Luis Norberto Benítez
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| | - Jorge Vazquez-Arenas
- Centro
Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, Ciudad de México 07340, Mexico
| | - Franklin Ferraro
- Departamento
de Ciencias Básicas, Universidad
Católica Luis Amigó, Transversal, 51A, #67B 90, Medellín 050034, Colombia
| | - Ricardo E. Palma-Goyes
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| |
Collapse
|
2
|
Ozdemir D, Fleming D, Picioreanu C, Patel R, Beyenal H. Electrochemical HOCl Production Modeling for an Electrochemical Catheter. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2024; 171:113504. [PMID: 39512539 PMCID: PMC11540492 DOI: 10.1149/1945-7111/ad8aee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Hypochlorous acid (HOCl) is a strong oxidizing agent that damages cells by interacting with lipids, nucleic acids, sulfur-containing amino acids, and membrane components. It is an endogenous substance produced by the immune system to protect mammals from pathogens. Previously, we developed an HOCl-generating electrochemical catheter (e-catheter) and demonstrated its ability to prevent central line-associated bloodstream infections. The e-catheter is an electrochemical system consisting of two parts - an e-hub and a tube. Working, counter, and reference electrodes are placed in the e-hub, which contains 0.9% NaCl as an electrolyte. Although a prototype of this device has shown activity against pathogens, it is helpful to understand the factors influencing associated electrochemical/chemical processes to optimize design and efficacy. A mathematical model could predict factors influencing HOCl generation and distribution in the catheter and could aid in optimizing these devices. Here, we developed an Electrochemical Hypochlorous Acid Production (EHAP) model to predict factors influencing electrochemical generation and distribution of HOCl in e-catheters, including polarization time, diffusion of HOCl into the e-catheter, operational voltage, working electrode length, and surface area.
Collapse
Affiliation(s)
- Dilara Ozdemir
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Derek Fleming
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cristian Picioreanu
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Duan X, Sha Q, Li P, Li T, Yang G, Liu W, Yu E, Zhou D, Fang J, Chen W, Chen Y, Zheng L, Liao J, Wang Z, Li Y, Yang H, Zhang G, Zhuang Z, Hung SF, Jing C, Luo J, Bai L, Dong J, Xiao H, Liu W, Kuang Y, Liu B, Sun X. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat Commun 2024; 15:1973. [PMID: 38438342 PMCID: PMC10912682 DOI: 10.1038/s41467-024-46140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.
Collapse
Affiliation(s)
- Xinxuan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianshui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Guotao Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ende Yu
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jinjie Fang
- State Key Lab of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yizhen Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jiangwen Liao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zeyu Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, PR China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongbin Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, PR China
| | - Guoxin Zhang
- College of Energy, Shandong University of Science and Technology, Tsingtao, 266590, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, 100029, Beijing, PR China
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Changfei Jing
- School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, PR China
| | - Lu Bai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, 100190, Beijing, PR China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, 100084, Beijing, PR China
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China.
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, PR China.
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, PR China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
4
|
Flores-Terreros RR, Serna-Galvis EA, Navarro-Laboulais J, Torres-Palma RA, Nieto-Juárez JI. An alternative approach to the kinetic modeling of pharmaceuticals degradation in high saline water by electrogenerated active chlorine species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115119. [PMID: 35500483 DOI: 10.1016/j.jenvman.2022.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A semiempirical approach considering the rate of reactive chlorine species-RCS- production (ΦE) as a function of current and Cl- concentration for the modeling of acetaminophen (ACE) degradation is presented. A filter-press reactor having a Ti/RuO2-ZrO2 (Sb2O3 doped) anode, NaCl (0.04-0.1 mol L-1) as supporting electrolyte, and operated in continuous mode, was considered. A current of 100 mA and a flow of 11 mL min-1 favored the electrogeneration of RCS and ACE degradation. Hydraulic retention time and ΦE were the most relevant parameters for the RCS production. These two parameters, plus the pollutant concentration, were very determinant for the ACE degradation. The model successfully reproduced the ACE removal in distilled water at different concentrations (10, 20, 40, and 60 mg L-1). The electrochemical system achieved removals between 80 and 100% of ACE in distilled water. The ACE treatment in actual seawater (a chloride-rich matrix, 0.539 mol L-1 of Cl-) was assessed, and the degradation was simulated using the developed model. The competing role toward electrogenerated RCS by intrinsic organic matter (3.2 mg L-1) in the seawater was a critical point, and the simulated values fitted well with the experimental data. Finally, the action of the electrochemical system on ciprofloxacin (CIP) in real seawater and its antimicrobial activity was tested. CIP removal (100% at 120 s) was faster than that observed for ACE (100% of degradation after 180 s) due to CIP has amine groups that are more reactive toward RCS than phenol moiety on ACE. Moreover, the system removed 100% of the antimicrobial activity associated with CIP, indicating a positive environmental effect of the treatment.
Collapse
Affiliation(s)
- Ruth R Flores-Terreros
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru No 210, Rímac, Lima, Peru
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Javier Navarro-Laboulais
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jessica I Nieto-Juárez
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru No 210, Rímac, Lima, Peru.
| |
Collapse
|
5
|
Palma-Goyes RE, Sosa-Rodríguez FS, Rivera FF, Vazquez-Arenas J. Modeling the sulfamethoxazole degradation by active chlorine in a flow electrochemical reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42201-42214. [PMID: 34467494 DOI: 10.1007/s11356-021-16154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to propose a continuous physicochemical model accounting for the active chlorine production used to degrade recalcitrant sulfamethoxazole (SMX) in an electrochemical flow reactor. The computational model describes the fluid mechanics and mass transfer occurring in the re/actor, along with the electrode kinetics of hydrogen evolution reaction arising on a stainless steel cathode, and the chloride oxidation on a DSA. Specifically, the anodic contributions assume the heterogeneous nature of the adsorbed chlorine species formed on this surface, which are a model requirement to correctly define the experimental reactor performance and degradation efficiency of the contaminant. The experimental validation conducted at different applied current densities, volumetric flows, and chloride concentrations is adequately explained by the model, thus evidencing some of the phenomena controlling the electrocatalytic chlorine production for environmental applications. The best conditions to eliminate the SMX are proposed based on the theoretical analysis of the current efficiency calculated with the model, and experimentally confirmed. The use of the Ti/RuO2-ZrO2-Sb2O3 anode at the bench scale improves the SMX removal by using electro-generated chlorine species adsorbed on its surface, which remarkably increases the oxidation potential of the system along with chlorine desorbed from the electrode. This is a technological innovation concerning other mediated oxidation methods entirely using oxidants in solution.
Collapse
Affiliation(s)
- Ricardo E Palma-Goyes
- Departamento de Química, Universidad del Valle, Santiago de Cali, Calle 13 # 100-00, CP 760032, Colombia
| | - Fabiola S Sosa-Rodríguez
- Research Area of Growth and Environment, Metropolitan Autonomous University, Azcapotzalco (UAM-A), Av. San Pablo 180, 02200, Mexico City, Mexico
| | - Fernando F Rivera
- CONACYT - Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Jorge Vazquez-Arenas
- CONACYT-Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No 186, 09340, Mexico City, Mexico.
| |
Collapse
|