1
|
Roggi A, Guazzelli E, Resta C, Agonigi G, Filpi A, Martinelli E. Vinylbenzyl Chloride/Styrene-Grafted SBS Copolymers via TEMPO-Mediated Polymerization for the Fabrication of Anion Exchange Membranes for Water Electrolysis. Polymers (Basel) 2023; 15:polym15081826. [PMID: 37111973 PMCID: PMC10144011 DOI: 10.3390/polym15081826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer's purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The -CH2Cl functional groups of the VBC grafts were then quantitatively converted to -CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE.
Collapse
Affiliation(s)
- Andrea Roggi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Claudio Resta
- Enapter s.r.l., Crespina-Lorenzana (Pisa), 56040 Pisa, Italy
| | | | - Antonio Filpi
- Enapter s.r.l., Crespina-Lorenzana (Pisa), 56040 Pisa, Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| |
Collapse
|
2
|
Sun L, Qu S, Lv X, Duan J, Wang W. Study of high‐temperature proton exchange membrane through one‐step encapsulation of ionic liquid in sulfonated poly(ether ether ketone). J Appl Polym Sci 2022. [DOI: 10.1002/app.53384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Lijun Sun
- State Key Laboratory Base of Eco‐Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology Qingdao Shandong China
| | - Shuguo Qu
- State Key Laboratory Base of Eco‐Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology Qingdao Shandong China
| | - Xueyan Lv
- State Key Laboratory Base of Eco‐Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology Qingdao Shandong China
| | - Jihai Duan
- State Key Laboratory Base of Eco‐Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology Qingdao Shandong China
| | - Weiwen Wang
- State Key Laboratory Base of Eco‐Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology Qingdao Shandong China
| |
Collapse
|
3
|
Xu L, Wang H, Min L, Xu W, Wang Y, Zhang W. Anion Exchange Membranes Based on Poly(aryl piperidinium) Containing Both Hydrophilic and Hydrophobic Side Chains. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Huimin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Luofu Min
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Wei Xu
- Tianjin Mainland Hydrogen Equipment Co., Ltd., Tianjin 301609, People’s Republic of China
| | - Yuxin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Wen Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| |
Collapse
|
4
|
Design, synthesis and characterization of SEBS anion exchange membranes with ultrahigh dimensional stability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Abstract
This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.
Collapse
Affiliation(s)
- Naiying Du
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Claudie Roy
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- National
Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario L5K 1B1, Canada
| | - Retha Peach
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
| | - Matthew Turnbull
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Simon Thiele
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
- Department
Chemie- und Bioingenieurwesen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christina Bock
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
6
|
Wang F, Cui Y, Sang J, Zhang H, Zhu H. Cross‐linked of poly(biphenyl pyridine) and poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted with double cations for anion exchange membrane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Becerra-Arciniegas RA, Narducci R, Ercolani G, Pasquini L, Knauth P, Di Vona ML. Aliphatic Anion Exchange Ionomers with Long Spacers and No Ether Links by Ziegler-Natta Polymerization: Properties and Alkaline Stability. Molecules 2022; 27:395. [PMID: 35056709 PMCID: PMC8780620 DOI: 10.3390/molecules27020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/05/2022] Open
Abstract
In this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler-Natta method, employing the complex ZrCl4 (THF)2 as a catalyst. A certain degree of crosslinking with N,N,N',N'-tetramethylethylenediamine (TEMED) was introduced with the aim of avoiding excessive swelling in water. The resulting anion exchange polymers were characterized by 1H-NMR, FTIR, TGA, and ion exchange capacity (IEC) measurements. The ionomers showed good alkaline stability; after 72 h of treatment in 2 M KOH at 80 °C the remaining IEC of 76% confirms that ionomers without ether bonds are less sensitive to a SN2 attack and suggests the possibility of their use as a binder in a fuel cell electrode formulation. The ionomers were also blended with polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde. The water uptake of the blend membranes was around 110% at 25 °C. The ionic conductivity at 25 °C in the OH- form was 29.5 mS/cm.
Collapse
Affiliation(s)
- Raul Andres Becerra-Arciniegas
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy;
- Aix-Marseille Univ, CNRS, MADIREL (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Campus St Jérôme, 13013 Marseille, France; (L.P.); (P.K.)
| | - Riccardo Narducci
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy;
| | - Gianfranco Ercolani
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy;
| | - Luca Pasquini
- Aix-Marseille Univ, CNRS, MADIREL (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Campus St Jérôme, 13013 Marseille, France; (L.P.); (P.K.)
| | - Philippe Knauth
- Aix-Marseille Univ, CNRS, MADIREL (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Campus St Jérôme, 13013 Marseille, France; (L.P.); (P.K.)
| | - Maria Luisa Di Vona
- Department of Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy;
| |
Collapse
|
8
|
Enhanced performance of poly(olefin)-based anion exchange membranes cross-linked by triallylmethyl ammonium iodine and divinylbenzene. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Firouz Tadavani K, Abdolmaleki A, Molavian MR, Zhiani M. New Strategy Based on Click Reaction for Preparation of Cross-Linked Poly(Benzimidazolium-Imide) as an Anion-Exchange Membrane with Improved Alkaline Stability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Amir Abdolmaleki
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, I. R. Iran
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, I. R. Iran
| | - Mohammad Reza Molavian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, I. R. Iran
| | - Mohammad Zhiani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, I. R. Iran
- Department of Chemistry, Tarbiat Modares University, Tehran 14115-175, I. R. Iran
| |
Collapse
|
10
|
Shi Y, Meng F, Zhao Z, Liu W, Zhang C. Hybrid anion exchange membranes with adjustable ion transport channels designed by compounding
SEBS
and homo‐polystyrene. J Appl Polym Sci 2021. [DOI: 10.1002/app.50540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Fanzhi Meng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Zhongfu Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Chunqing Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| |
Collapse
|
11
|
Treichel M, Tyler Womble C, Selhorst R, Gaitor J, Pathiranage TMSK, Kowalewski T, Noonan KJT. Exploring the Effects of Bulky Cations Tethered to Semicrystalline Polymers: The Case of Tetraaminophosphoniums with Ring-Opened Polynorbornenes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Megan Treichel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - C. Tyler Womble
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Jamie Gaitor
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Taniya M. S. K. Pathiranage
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Kevin J. T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213-2617, United States
| |
Collapse
|