1
|
Ali J, Zheng C, Lyu T, Oladoja NA, Lu Y, An W, Yang Y. Enhanced bioelectroremediation of heavy metal contaminated groundwater through advancing a self-standing cathode. WATER RESEARCH 2024; 256:121625. [PMID: 38640565 DOI: 10.1016/j.watres.2024.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Hexavalent chromium (Cr(VI)) contamination in groundwater poses a substantial global challenge due to its high toxicity and extensive industrial applications. While the bioelectroremediation of Cr(VI) has attracted huge attention for its eco-friendly attributes, its practical application remains constrained by the hydrogeochemical conditions of groundwater (mainly pH), low electron transfer efficiency, limitations in electrocatalyst synthesis and electrode fabrication. In this study, we developed and investigated the use of N, S co-doped carbon nanofibers (CNFs) integrated on a graphite felt (GF) as a self-standing cathode (NS/CNF-GF) for the comprehensive reduction of Cr(VI) from real contaminated groundwater. The binder free cathode, prepared through electro-polymerization, was employed in a dual-chamber microbial fuel cell (MFC) for the treatment of Cr (VI)-laden real groundwater (40 mg/L) with a pH of 7.4. The electrochemical characterization of the prepared cathode revealed a distinct electroactive surface area, more wettability, facilitating enhanced adsorption and rapid electron transfer, resulting in a commendable Cr(VI) reduction rate of 0.83 mg/L/h. The MFC equipped with NS/CNF-GF demonstrated the lowest charge transfer resistance (Rct) and generated the highest power density (155 ± 0.3 mW/m2) compared to control systems. The favorable electrokinetics for modified cathode led to swift substrate consumption in the anode, releasing more electrons and protons, thereby accelerating Cr(VI) reduction to achieve the highest cathodic coulombic efficiency (C.Eca)of80 ± 1.3 %. A similar temporal trend observed between Cr(VI) removal efficiency, COD removal efficiency, and C.Eca, underscores the effective performance of the modified electrode. The reusability of the binder free cathode, exemption from catholyte preparation and the absence of pH regulation requirements highlighted the potential scalability and applicability of our findings on a larger scale.
Collapse
Affiliation(s)
- Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Changhong Zheng
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Bedfordshire MK43 0AL, UK.
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Ying Lu
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Wengang An
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Farid S, Mao Q, Ren S, Hao C, Dong X. Promoting the Oxygen Evolution Reaction via Morphological Manipulation of a Lamellar Nanorod-Assembled Ni(II)-Pyrazolate Superstructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47775-47787. [PMID: 36240000 DOI: 10.1021/acsami.2c14192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale pyrazolate-based coordination polymers (CPs) are becoming increasingly popular as electrocatalysts owing to their customizable compositions and structures. However, using them for oxygen evolution reaction (OER) is highly challenging due to their unsatisfactory catalytic efficiency and relatively low stability. Herein, a simple one-step solvothermal process was employed for the fabrication of polycrystalline nickel-pyrazolate [Ni(Pz)] with an unusual lamellar nanorod-assembled microsphere morphology for the first time using ethanol as a green organic solvent via controlling other physical parameters. Meanwhile, the Ni(Pz) structure and morphology are investigated to derive its formation process following the different monomeric feed ratios relying on the metal/ligand interactions of CP. Shaping the Ni(Pz) electrocatalyst in well-oriented lamellar nanorod-assembled microspheres brings the advantage of porosity and high specific surface area, which expedites mass/charge transport and contact with the electrolyte as well as creates less tortuous pathways for charge distribution, thus improving the charge homogeneity. These high-class structural features and polycrystalline nature of Ni(Pz)-E-PVP facilitate amazing catalytic OER activity with a low overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of only 94 mV dec-1 beyond the yardstick material (i.e., RuO2) in alkaline solution. A suite of measurements, entailing X-ray photoelectron spectroscopy and density functional theory calculations, suggest that the rich Ni-N4 moieties in Ni(Pz)-E-PVP are central species providing adsorption sites for OER intermediates. This facile protocol is prophesied to commence the imminent development of noble metal-free, effective, and low-priced electrocatalysts for OER.
Collapse
Affiliation(s)
- Sumbal Farid
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Qing Mao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Suzhen Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Xufeng Dong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| |
Collapse
|
3
|
N, S, O co-doped porous carbons derived from bio-based polybenzoxazine for efficient CO2 capture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zhao L, Di F, Wang X, Farid S, Ren S. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Kaushik J, Tripathi KM, Singh R, Sonkar SK. Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb(II) metal ions and H 2O 2. CHEMOSPHERE 2022; 287:132105. [PMID: 34826890 DOI: 10.1016/j.chemosphere.2021.132105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A simpler approach of functionalization for the fabrication of thiourea-functionalized-Graphene Aerogel (t-GA) is described here. Graphene Aerogel (GA) was synthesized from bio-mass, which on a simpler oxidative treatment get converted to its water-soluble version due to the impregnation of several oxygenous functionalities like carboxylic, hydroxyl, etc. Further, these carboxylated groups have been functionalized with the molecules of thiourea using the long known dicyclohexylcarbodiimide (DCC) as a coupling agent. The as-synthesized t-GA shows bright yellow fluorescence with a quantum yield of ~3% and holds the high-aqueous solubility and photostability. The fluorescence property of t-GA has been used here for the specific and selective sensing of toxic lead (Pb(II)) metal ions from the used many other metal ions via the fluorescence quenching and showed a limit of detection ~7.3 nM. Further, the mechanism for selective sensing was studied in detail and found to be preferable via ligand to metal charge transfer quenching mechanism. The cyclic voltammetry studies supported the selective sensing of Pb(II). Moreover, t-GA has also been studied for the sensing of hydrogen peroxide and as a yellow fluorescent ink.
Collapse
Affiliation(s)
- Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan, 321001, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
7
|
Shi Y, Jiang D, Zhao J, Wu L, Zhao C, Ma J, Pan H, Lin Q. Synthesis and performance of Pd Multi@HCS catalysts with Pd nanoparticles partially embedded in the inner wall of hollow carbon spheres for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. NEW J CHEM 2022. [DOI: 10.1039/d2nj01778d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PdMulti@HCS catalysts ensure the maximum exposure of Pd active sites and optimal transfer and diffusion ability for H2O2 synthesis.
Collapse
Affiliation(s)
- Yongyong Shi
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Donghai Jiang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jingyun Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Lang Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Chenchen Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Jun Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Hongyan Pan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
- Guizhou Engineering Research Center of Efficient Utilization for Industrial Waste, Guiyang, Guizhou 550025, China
| |
Collapse
|
8
|
Synthesis of heteroatom and metallic compound self-co-doped porous carbon derived from swine manure for supercapacitor electrodes and lead ion adsorbents. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Zhang H, Lv X, Tian W, Hu Z, Ma K, Tan S, Ji J. One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|