1
|
Li M, Wang S, Liu D, Losic D, Zhao N, Tian Q, Shen Y, Yu R, Liu H, Ma Q, Yuan P. Green synthesis of diatom-allophane bio-nanocomposites for highly efficient oxytetracycline adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175641. [PMID: 39168336 DOI: 10.1016/j.scitotenv.2024.175641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The extensive use of the antibiotic oxytetracycline (OTC) has led to considerable environmental contamination and other negative impacts, prompting an urgent need for a green, effective, and innovative OTC adsorption material. In this study, diatom-allophane bio-nanocomposites were synthesized using a simple and eco-friendly method, yielding a homogeneous coating of allophane nanoparticles on diatom surfaces. The resultant bio-nanocomposites were found to have hierarchically porous structures and abundant active sites derived from successful allophane loading and dispersion on diatom surfaces. The OTC adsorption capacity of this novel adsorbent is remarkable (219.112 mg·g-1), surpassing the capacities of raw allophane and diatoms by >5 and 10 times, respectively. Mechanistically, OTC adsorption by the bio-nanocomposites was found to be driven primarily by chemisorption through a process involving complexation between the amide and amino groups on OTC and the aluminum hydroxyl and carboxyl groups on the adsorbent surface. Electrostatic interactions and hydrogen bonding also contribute significantly to OTC capture. Furthermore, the diatom-allophane bio-nanocomposites exhibit excellent performance over a wide pH range (4-7), in the presence of various cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, NO3-, SO42-), and in real water bodies. These findings demonstrate the potential of the diatom-allophane bio-nanocomposite as a green, efficient, and promising biological-mineral adsorbent for environmental remediation, leveraging the combined utilization of biological and mineral resources.
Collapse
Affiliation(s)
- Mengyuan Li
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shun Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Key Laboratory of Marine Environmental Science (MEL), Xiamen University, Xiamen 361012, China.
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ning Zhao
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Tian
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China
| | - Yuguo Shen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongda Yu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyi Ma
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Peng S, Wei Y, Huang Y, Wei L, Chen P. Highly efficient adsorption of antibiotic ciprofloxacin hydrochloride from aqueous solution by diatomite-basic zinc chloride composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98490-98501. [PMID: 37608178 DOI: 10.1007/s11356-023-29217-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
The antibiotic ciprofloxacin (CIP) is used to treat a variety of bacterial infections, yet it poses significant health risks to aquatic environments. While adsorption is a promising technique for CIP removal, current adsorption capacities remain limited. In this study, we introduce a diatomite and basic zinc chloride composite (ZnHC-Dt) prepared using a straightforward deposition method, with the ability to achieve highly efficient ciprofloxacin removal. ZnHC-Dt is characterized using field emission scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and the Brunauer-Emmett-Teller method (BET). We also assess the zeta potential. The optimized ZnHC-Dt adsorbent, achieved at a mass ratio of 0.45 with ZnHC/(ZnHC+Dt), is adopted with a CIP adsorption capacity of 831.96 mg/g at 25 °C, broad pH adaptability (within 3.0-10.0), rapid adsorption rate (reaching equilibrium in 4 h), and stable performance under Na+ ionic strength. The CIP adsorption process follows pseudo-second-order kinetics and aligns well with the Langmuir adsorption model. The high adsorption capacity of ZnHC-Dt can be attributed to electrostatic attraction, hydrogen bonding, surface complexation, and available adsorption sites. During the desorption process, the CIP removal rate retains 65.33% effectiveness after five cycles. The results suggest that ZnHC-Dt holds significant potential for CIP removal in aqueous solutions.
Collapse
Affiliation(s)
- Shuwei Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, Taipa, 999078, China
| | - Yiming Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longmeng Wei
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pengcheng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Wei Y, Yuan P, Liu D, Liu M, Losic D, Ma X, Jiang R, Wu N, Yang F, Zhang J. Converting Chrysotile Nanotubes into Magnesium Oxide and Hydroxide Using Lanthanum Oxycarbonate Hybridization and Alkaline Treatment for Efficient Phosphate Adsorption. Inorg Chem 2022; 61:14684-14694. [PMID: 36050289 DOI: 10.1021/acs.inorgchem.2c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnesium oxide and hydroxide nanomaterials comprise a class of promising advanced functional metal nanomaterials whose use in environmental and material applications is increasing. Several strategies to synthesize these nanomaterials have been described but are unsustainable and uneconomic. This work reports on a processing strategy that turns natural magnesium-rich chrysotile into magnesium oxide and hydroxide nanoparticles via nanoparticle hybridization and an alkaline process while enabling La-based nanoparticles to coat the chrysotile nanotube surfaces. The adsorbent's resulting hybrid nanostructure had an outstanding capacity for phosphate uptake (135.2 mg P g-1) and enhanced regeneration performance. Furthermore, the adsorbent featured wide applicability with respect to the coexistence of competitive anions and a broad range of pH conditions, and its high-performance phosphate removal from sewage effluent was also demonstrated. Spectroscopic and microscopic analyses revealed the scavenging ability of phosphate by the La-based and Mg-based nanoparticles and the multiple capture mechanisms involved, including surface complexation and ion exchange. This proposed approach expands chrysotile's potential use as a magnesium-rich nanomaterial and harbors great promise for the removal of pollutants in a variety of real-world settings.
Collapse
Affiliation(s)
- Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaomin Ma
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| | - Ran Jiang
- The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510640, China
| | - Nanchun Wu
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| | - Fang Yang
- The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510640, China
| | - Junxiong Zhang
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| |
Collapse
|
4
|
Chen Z, Zhang H, Fan G, He X, He Z, Zhang L. Diatomite Composited with a Zeolitic Imidazolate Framework for Removing Phosphate from Water. ACS OMEGA 2022; 7:26154-26164. [PMID: 35936478 PMCID: PMC9352335 DOI: 10.1021/acsomega.2c01648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
Adsorption technology based on various adsorbents has been widely applied in wastewater treatment containing phosphate. A novel diatomite adsorbent composited with ZIF-8 (CZD) was developed for removing phosphate from water in this work. The chitosan was used to pre-modify the diatomite so that ZIF-8 could be anchored on the surface of the diatomite solidly and uniformly. The diatomite composited with ZIF-8 was then used to remove phosphate in water by an adsorption process, the process variables such as adsorption time, temperature, pH, and competitive ions were investigated. The electrostatic attraction was the primary mechanism of phosphate removal. The adsorption reached equilibrium within 90 min, and its sorption capacity increased when adsorption time and temperature increased. Especially, CZD had a rapid adsorption rate and 85% of the phosphate in the solution can be adsorbed within the first 10 min. The maximum phosphate adsorption capacities of the modified diatomite reached 13.46, 13.55, and 13.95 mg/g at 25, 35, and 45 °C, respectively. The removal efficiencies of CZD for phosphate were more than 98% and even came up to 100% at 45 °C. The adsorption isotherms fit well with the Langmuir isotherm model. The Freundlich isotherm and Temkin isotherm showed that the adsorption process is physical in nature. The kinetic data of the adsorption process were fitted by the pseudo-second-order kinetics. Thermodynamic parameters indicated that the adsorption process was endothermic. This adsorbent provided an alternative for phosphate removal on account of the high adsorption efficiency in a short time. Therefore, CZD could be a promising and eco-friendly phosphate adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Zicheng Chen
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin, Jilin Province 132012, P. R. China
- Department
of Chemical Engineering, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Huiwen Zhang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin, Jilin Province 132012, P. R. China
| | - Guangyuan Fan
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin, Jilin Province 132012, P. R. China
| | - Xiangyang He
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin, Jilin Province 132012, P. R. China
| | - Zhibin He
- Department
of Chemical Engineering, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Lanhe Zhang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin, Jilin Province 132012, P. R. China
| |
Collapse
|
5
|
Xu S, Li D, Guo H, Lu H, Qiu M, Yang J, Shen F. Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137770. [PMID: 35805431 PMCID: PMC9265722 DOI: 10.3390/ijerph19137770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Adsorption is an efficient technology for removing phosphorus from wastewater to control eutrophication. In this work, MgO-modified biochars were synthesized by a solvent-free ball milling method and used to remove phosphorus. The MgO-modified biochars had specific surface areas 20.50–212.65 m2 g−1 and pore volume 0.024–0.567 cm3 g−1. The as-prepared 2MgO/BC-450-0.5 had phosphorus adsorption capacities of 171.54 mg g−1 at 25 °C and could remove 100% of phosphorus from livestock wastewater containing 39.51 mg L−1 phosphorus. The kinetic and isotherms studied show that the pseudo-second-order model (R2 = 0.999) and Langmuir models (R2 = 0.982) could describe the adoption process well. The thermodynamic analysis indicated that the adsorption of phosphorus on the MgO-modified biochars adsorbent was spontaneous and endothermic. The effect of pH, FTIR spectra and XPS spectra studies indicated that the phosphorus adsorption includes a protonation process, electrostatic attraction and precipitation process. This study provides a new strategy for biochar modification via a facile mechanochemical method.
Collapse
Affiliation(s)
- Siyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
| | - De Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
- College of Resources and Environment, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
| | - Haodong Lu
- Department of Chemical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Mo Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
| | - Jirui Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
- Correspondence: (J.Y.); (F.S.)
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (S.X.); (D.L.); (H.G.); (M.Q.)
- Correspondence: (J.Y.); (F.S.)
| |
Collapse
|
6
|
Song Y, Song X, Sun Q, Wang S, Jiao T, Peng Q, Zhang Q. Efficient and sustainable phosphate removal from water by small-sized Al(OH) 3 nanocrystals confined in discarded Artemia Cyst-shell: Ultrahigh sorption capacity and rapid sequestration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150087. [PMID: 34500276 DOI: 10.1016/j.scitotenv.2021.150087] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
We reported a new strategy for efficient phosphate removal from wastewaters, it relies on the discarded Artemia Cyst-shell in-situ growth of Al(OH)3 nanocluster, the charged amino-acids components of skeleton make available for the small size of Al(OH)3 formation (< 10 nm) with high activity, and the three-dimensional porous structure of discarded matrix provides fast kinetics and efficient Al(OH)3 nanoparticles utilization. These hybrid adsorbents exhibit ultrahigh capacity (850.5 mg/g) and fast kinetics (~2 min) by recent ten-years (2011-2020) survey, the superior selectivity against various foreign ions, with a distribution coefficient (Kd) as high as 4820 mL/g, the porous structure and fast kinetics also accelerate the phosphate accessibility, yielding a satisfactory capacity of ~3000 L/kg sorbent (Artemia CS-Al) for the application, even varying at high feeding-speeds. The saturated adsorbent can be readily regenerated and reused without decrease in performance, this technology is promising for mitigating the contamination problem of excess phosphate worldwide.
Collapse
Affiliation(s)
- Yaran Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Xiaoxin Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qina Sun
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Sufeng Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water And Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
7
|
Miao L, Deng W, Chen X, Gao M, Chen W, Ao T. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1757-1773. [PMID: 34662311 DOI: 10.2166/wst.2021.358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capacitive deionization (CDI) has been considered as a promising technology for removing phosphate from water but suffer inferior selectivity and electrosorption performances for phosphate of current carbon electrodes in CDI. Herein, we achieved highly selective phosphate removal from a ternary effluent of Cl-, PO43-, and SO42- by using nitric acid-treated activated carbon (AC) with various modification times and pure AC as the anode and cathode, a novel phosphate selective asymmetric CDI reactor. The results showed that carboxyl groups greatly grafted on the materials after modification (varying from 0.00084 to 0.0012 mol g-1). The phosphate selectivity of the present research was higher than that of unmodified CDI, and it increased with the increase of carboxyl groups content. The highest phosphate selectivity (2.01) in modified materials is almost six times higher than that of pure AC. Moreover, the modified electrodes exhibited good regenerative ability with a phosphate desorption efficiency of around 72.12% during the adsorption/desorption process and great stability during the cycling experiment. These results demonstrated that the innovative application of nitric acid-modified AC can effectively selectively remove phosphate from mixed anion solution, opening a hopeful window to selective adsorption in water treatment by CDI.
Collapse
Affiliation(s)
- Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Wenyang Deng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, No. 122, Section 1 Yellow River Middle Road, Chengdu 610065, Sichuan, China
| | - Xiaohong Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Li S, Zeng W, Ren Z, Jia Z, Wu G, Peng Y. Performance difference of hydrated phosphorophilic metal oxides in modifying diatomite and recovering phosphorus from wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Wei Y, Guo K, Wu H, Yuan P, Liu D, Du P, Chen P, Wei L, Chen W. Highly regenerative and efficient adsorption of phosphate by restructuring natural palygorskite clay via alkaline activation and co-calcination. Chem Commun (Camb) 2021; 57:1639-1642. [PMID: 33463633 DOI: 10.1039/d0cc07888c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present a new strategy to create a highly regenerative and efficient phosphate adsorbent based on activating natural palygorskite structures. Both the regeneration via alkaline activation and synthesis via co-calcination restructured the palygorskite and created adsorptive metal oxides. The phosphate adsorbent exhibits excellent regeneration performance with high removal capacity.
Collapse
Affiliation(s)
- Yanfu Wei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Zhang J, Sheng X, Li N, Ping Q. Adsorption and Release Kinetics, Equilibrium, and Thermodynamic Studies of Hymexazol onto Diatomite. ACS OMEGA 2020; 5:29504-29512. [PMID: 33225181 PMCID: PMC7675930 DOI: 10.1021/acsomega.0c04449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/23/2020] [Indexed: 06/02/2023]
Abstract
Pesticide sustained-release agents have advantages of low toxicity, high efficiency, and long duration. However, the sustained-release effects were not ideal, such as short release time and low release rate. The physical and chemical properties of diatomite are high stability, high porosity, and good sustained-release and controlled-release abilities. A series of diatomite-based pesticide sustained-release agents were prepared by adsorbing hymexazol onto diatomite. Kinetics, equilibrium, and thermodynamic studies for adsorption were carried out as well. It was found that the modified diatomite has a better adsorption effect for hymexazol, and the adsorption rate reached 16.64%. The equilibrium data followed with the Langmuir isotherm model, and the adsorption process was an endothermic process. Release results showed that the diatomite-based pesticide has a significant sustained-release effect. The sustained-release time reached more than 25 days, and the maximum release rate was above 70%. The experimental data was fitted into the Ritger-Peppas equation, and it was found that the release was controlled by the Fick diffusion mechanism. This confirmed the applicability of the modified diatomite as an efficient adsorption carrier for pesticide release.
Collapse
Affiliation(s)
- Ying Liu
- Liaoning Key Laboratory of
Pulp and Papermaking Engineering, Dalian
Polytechnic University, Dalian 116034, Liaoning, China
| | - Jian Zhang
- Liaoning Key Laboratory of
Pulp and Papermaking Engineering, Dalian
Polytechnic University, Dalian 116034, Liaoning, China
| | | | - Na Li
- Liaoning Key Laboratory of
Pulp and Papermaking Engineering, Dalian
Polytechnic University, Dalian 116034, Liaoning, China
| | - Qingwei Ping
- Liaoning Key Laboratory of
Pulp and Papermaking Engineering, Dalian
Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Yang F, Wang C, Guo Z. Integration of bubble phobicity, gas sensing and friction alleviation into a versatile MoS 2/SnO 2/CNF heterostructure by an impressive, simple and effective method. NANOSCALE 2020; 12:18629-18639. [PMID: 32909567 DOI: 10.1039/d0nr05378c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The engineering of composite surfaces and interfaces of materials at the micro/nano-hierarchical level with multiple functionalities is attracting increasing attention due to their biomimetic technological applications, especially the self-cleaning with gas bubbles, gas sensing and sustainable anti-friction performances. Herein, the ternary MoS2/SnO2/CNF (CNF: carbon nanofiber) was designed and assembled by an in situ facile method. Interestingly, its microstructure exhibits a necklace-like morphology. The MoS2/SnO2/CNF shows desirable bubble phobicity under water and in a PAO4 environment on various substrates, an acceptable gas-sensing ability to target gas with a detection limit of 5 ppm and fascinating tribological performances for additives in different kinds of base/lubricating oils. These results demonstrate that the necklace-like ternary MoS2/SnO2/CNF structure could have numerous applications in one system and may provide a new perspective in composite surface and interface materials engineering.
Collapse
Affiliation(s)
- Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | |
Collapse
|
12
|
Chaudhury S, Nir O. Electro-Enhanced Membrane Sorption: A New Approach for Selective Ion Separation and Its Application to Phosphate and Arsenic Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sanhita Chaudhury
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| |
Collapse
|