1
|
Maeno Z, Koiso H, Shitori T, Hiraoka K, Seki S, Namiki N. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO 3/ZrO 2. Chem Asian J 2024; 19:e202301096. [PMID: 38146061 DOI: 10.1002/asia.202301096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
We investigated supported-MoO3 materials effective for the chemical looping dry reforming of methane (CL-DRM) to decrease the reaction temperature. Ni-modified molybdenum zirconia (Ni/MoO3/ZrO2) showed CL-DRM activity under isothermal reaction conditions of 650 °C, which was 100-200 °C lower than the previously reported oxide-based materials. Ni/MoO3/ZrO2 activity strongly depends on the MoO3 loading amount. The optimal loading amount was 9.0 wt.% (Ni/MoO3(9.0)/ZrO2), wherein two-dimensional polymolybdate species were dominantly formed. Increasing the loading amount to more than 12.0 wt.% resulted in a loss of activity owing to the formation of bulk Zr(MoO4)2 and/or MoO3. In situ Mo K-edge XANES studies revealed that the surface polymolybdate species serve as oxygen storage sites. The Mo6+ species were reduced to Mo4+ species by CH4 to produce CO and H2. The reduced Mo species reoxidized by CO2 with the concomitant formation of CO. The developed Ni/MoO3(9.0)/ZrO2 was applied to the long-term CL-DRM under high concentration conditions (20 % CH4 and 20 % CO2) at 650 °C, with two pathways possible for converting CH4 and CO2 to CO and H2 via the redox reaction of the Mo species and coke formation.
Collapse
Affiliation(s)
- Zen Maeno
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Hiroki Koiso
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Toshiki Shitori
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Koji Hiraoka
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Shiro Seki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Norikazu Namiki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Bhaskaran A, Singh SA, Reddy BM, Roy S. Integrated CO 2 Capture and Dry Reforming of CH 4 to Syngas: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14766-14778. [PMID: 38978485 DOI: 10.1021/acs.langmuir.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrating carbon capture with dry reforming of methane offers a promising approach to addressing greenhouse gas emissions while producing valuable syngas. This review examines the complexities and progress made in this integrated process, wherein catalysts play a critical role in adsorbing carbon dioxide and facilitating the conversion of methane to syngas. The chemical process entails the concurrent capture of CO2 emissions and their usage in dry reforming, a reaction in which CH4 interacts with CO2 to generate syngas, an essential precursor for various industrial applications. The dual-functional materials can adsorb carbon dioxide and actively reform to an end-use application. The much-studied Ca-based sorbents exhibit a theoretical carbon capture capacity of 17.8 mmol g-1. However, during practical exploration of these materials as a dual-functional catalyst for integrated carbon capture and the dry reforming of methane, the uptake reduces to ∼13 mmol g-1 carbon capacity with 96.5 and 96% conversions of CO2 and CH4, respectively. Therefore, a thorough analysis of the complex relationship between CO2 capture and CH4 reforming catalysis is attempted herein based on various reported materials. Design concepts, structural optimization, and performance evaluation analysis of the dual-functional materials reveal their importance in carbon capture and reformation technology. Additionally, this review covers the field difficulties, future perspectives, and attractive commercial implementation predictions. This scrutiny illustrates the significance of dual-functional materials for sustainable energy production and environmental protection.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Satyapaul A Singh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Benjaram M Reddy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| |
Collapse
|
3
|
Shao B, Wang ZQ, Gong XQ, Liu H, Qian F, Hu P, Hu J. Synergistic promotions between CO 2 capture and in-situ conversion on Ni-CaO composite catalyst. Nat Commun 2023; 14:996. [PMID: 36813792 PMCID: PMC9947161 DOI: 10.1038/s41467-023-36646-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The integrated CO2 capture and conversion (iCCC) technology has been booming as a promising cost-effective approach for Carbon Neutrality. However, the lack of the long-sought molecular consensus about the synergistic effect between the adsorption and in-situ catalytic reaction hinders its development. Herein, we illustrate the synergistic promotions between CO2 capture and in-situ conversion through constructing the consecutive high-temperature Calcium-looping and dry reforming of methane processes. With systematic experimental measurements and density functional theory calculations, we reveal that the pathways of the reduction of carbonate and the dehydrogenation of CH4 can be interactively facilitated by the participation of the intermediates produced in each process on the supported Ni-CaO composite catalyst. Specifically, the adsorptive/catalytic interface, which is controlled by balancing the loading density and size of Ni nanoparticles on porous CaO, plays an essential role in the ultra-high CO2 and CH4 conversions of 96.5% and 96.0% at 650 °C, respectively.
Collapse
Affiliation(s)
- Bin Shao
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Zhi-Qiang Wang
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Honglai Liu
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Feng Qian
- grid.28056.390000 0001 2163 4895Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - P. Hu
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China ,grid.4777.30000 0004 0374 7521School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast, BT9 5AG UK
| | - Jun Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|