1
|
Gao Y, Xu G, Zhao P, Liu L, Zhang E. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Jin Z, Qiu M, Wen J, Shen Y, Chen X, Fan Y. Construction of ZrO2-CeO2 composite UF membranes for effective PVA recovery from desizing wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Gu Q, Ng TCA, Poh W, Kirk CH, Lyu Z, Zhang L, Wang J, Ng HY. 3D spray-coated gradient profile ceramic membranes enables improved filtration performance in aerobic submerged membrane bioreactor. WATER RESEARCH 2022; 220:118661. [PMID: 35661502 DOI: 10.1016/j.watres.2022.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Rational design of cross-sectional microstructure in ceramic membranes has shown to improve membrane filtration efficacy without affecting rejection performance. In this work, we adopted 3D spray-coating technique to generate multi-layered membrane layers on macro-porous flat-sheet ceramic supports. The thickness of each layer was controlled by spray-coating cycles, and a gradient membrane layer was rationalized by successively coating three ceramic slurries containing alumina powders of gradually refined particle sizes, followed by co-sintering. Gradient membrane layers on both sides of the various sized flat-sheet ceramic supports were fabricated. Compared to the non-gradient counterpart, the gradient membranes showed both higher pure water flux (at the same TMP) and lower membrane resistance, which clearly evidenced the benefits of gradient profile in the membrane layer. Further, their performance in aerobic membrane bioreactors (AeMBR) was comparably studied for the first time. The treatment performance was not significantly affected by the types of membranes used, while the gradient membrane showed better filtration performance (i.e., a slower rise in TMP). Although the fouling mechanisms were revealed to be similar, the fouling layer in the gradient membrane was composed of a higher percentage of smaller foulants compared to that of the non-gradient counterpart. The observed differences were closely correlated to the larger internal pore structure in the gradient membrane. The present work provides a feasible 3D spray-coating technique for the fabrication of gradient flat-sheet ceramic membranes, and clarifies the benefits in AeMBR for domestic wastewater treatment.
Collapse
Affiliation(s)
- Qilin Gu
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576.
| | - Weijie Poh
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Chin Ho Kirk
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574
| | - Zhiyang Lyu
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574
| | - Lei Zhang
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574
| | - John Wang
- Department of Material Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634.
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411.
| |
Collapse
|
4
|
Construction Method of Industrial College in Vocational Colleges Based on Cluster Analysis Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3278395. [PMID: 35734772 PMCID: PMC9208966 DOI: 10.1155/2022/3278395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022]
Abstract
In the context of the combination of industry and education, the construction of industrial colleges in vocational colleges can drive the scientific development of specialty settings in colleges and universities, and promote the way for colleges to expand students' practical teaching under the teaching of theoretical knowledge, and it is also an effective way for students to stimulate their learning enthusiasm and innovation enthusiasm. Colleges and universities can increase the direction and characteristics of specialist settings in colleges while enhancing instructors' professional level through school-business collaboration, and growing measures of talent training in colleges and universities plays a significant guiding role. The way to set up industrial colleges in vocational colleges reflects the development characteristics of talent training mode in the new era, and it is also an effective way to meet the practical training of students and the actual needs of society. It is a new school running mode of transforming productivity, cooperation, and mutual benefit, which is very worthy of promotion and development. This paper analyzes the problems existing in the construction of industrial colleges in vocational colleges in China and finds out the corresponding solutions. A path method of industrial college construction in vocational colleges based on the cluster analysis algorithm is proposed. The validity of this model is verified by experiments, which lays a foundation for the construction of industrial colleges in vocational colleges.
Collapse
|
5
|
In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118954] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|