1
|
Fang J, Cheng X, Wang Y, Wu T, Xing H, Guo N. Preparation of amino-functionalized yeast/yam starch composite adsorption gel and its mechanism for the adsorption of Congo red and copper ions. Carbohydr Polym 2025; 357:123453. [PMID: 40158984 DOI: 10.1016/j.carbpol.2025.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Water resource pollution is a major global challenge that poses a serious threat to human health and the environment. In this study, glutaraldehyde was used to cross-link polyethyleneimine (PEI) with yeast and starch. The PEI-modified yeast was attached to the yam starch adsorption gel using the gel properties of starch to prepare a novel starch-based composite adsorbent material (NH2(Gl)-YSA@SZ410). Owing to its porous interconnected structure, the material exhibited optimal adsorption performance, wettability, and mechanical properties. NH2(Gl)-YSA@SZ410 could remove Congo red (CR), Cu2+, and coexisting pollutants (CR and Cu2+ mixture) from solutions. At 308 K, in single CR- or Cu2+-contaminated solutions, the maximum adsorption capacities were 293.52 and 50.34 mg/g, respectively, whereas in the binary-pollutant system, the maximum adsorption capacities were 363.15 and 149.50 mg/g, respectively. Additionally, an in-depth study of single-pollutant and binary-pollutant systems was conducted using adsorption kinetics, isotherms, and adsorption mechanisms. Theoretical calculations indicated that CR and Cu2+ interacted with NH2(Gl)-YSA@SZ410 composite materials through forces such as hydrogen bonding and electrostatic interactions. Furthermore, NH2(Gl)-YSA@SZ410 exhibited excellent stability and practicality. The adsorbent can be effectively applied to wastewater containing both heavy metals and dyes, offering novel ideas for biobased adsorbents.
Collapse
Affiliation(s)
- Jiaqi Fang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xin Cheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tianyang Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Heqin Xing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Semenova A, Giles LW, Vidallon MLP, Follink B, Brown PL, Tabor RF. Copper-Binding Properties of Polyethylenimine-Silica Nanocomposite Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10585-10600. [PMID: 35984422 DOI: 10.1021/acs.langmuir.2c01457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing demand for copper resources, accompanied by increasing pollution, has resulted in an urgent need for effective materials for copper binding and extraction. Polyethylenimine (PEI) is one of the strongest copper-chelating agents but is not suitable directly (as is) for most applications due to its high solubility in water. PEI-based composite materials show potential as efficient and practical alternatives. In the present work, the interaction of copper ions with PEI-silica nanocomposite particles and precursor PEI microgels (as a reference) is investigated. It is hypothesized that the main driving force of the reaction is chelation of copper ions by amino groups in the PEI network. The presence of silica in the PEI-silica composites was shown to increase the copper-binding capacity in comparison with the parent microgel. The copper-binding behavior of etched (PEI-free "ghost") composite particles in comparison with the original composites and microgel particles shows that silica nanoparticles in the composite structure increase the number of copper-binding sites in the PEI network rather than adsorbing copper themselves. PEI-silica composites can be easily recycled after copper adsorption by simply washing in 1 M nitric acid, which results in complete copper extraction. Employing this recovery method, PEI-silica composite particles can be used for multiple, efficient cycles of copper removal and extraction.
Collapse
Affiliation(s)
- Alexandra Semenova
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| | - Luke W Giles
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| | | | - Bart Follink
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| | - Paul L Brown
- Rio Tinto, Bundoora Technical Development Centre, 1 Research Avenue, Bundoora 3083, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton 3800, Australia
| |
Collapse
|
3
|
Zhang N, Gao Y, Sheng K, Xu X, Jing W, Bao T, Wang S. Ferric iron loaded porphyrinic zirconium MOFs on corncob for the enhancement of diuretics extraction. CHEMOSPHERE 2022; 301:134694. [PMID: 35472611 DOI: 10.1016/j.chemosphere.2022.134694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Herein, corncob waste was used as a scaffold for the fabrication of effective adsorbents. Porphyrinic zirconium metal-organic frameworks (MOFs) PCN-223 and PCN-224 constructed by different numbers of Zr6 cluster nodes were grown on the surface of the corncob. Fe (Ш) ions were implanted in the porphyrin ring by post-synthesis modification. The results showed that the extraction capacity of diuretics on PCN-224@corncob containing suitable pore size was larger than that of PCN-223@corncob. The adsorption of diuretics was further enhanced because of the electrostatic effect caused by implantation of Fe (Ш) ions. PCN-224-Fe@corncob was recyclable and selective for the extraction of furosemide (Fur) and bumetanide (Bum). Coupled in-syringe solid phase extraction (IS-SPE) with ultra-performance liquid chromatography (UPLC), an efficient, sensitive, and stable method was established. With a sensitivity between 0.6 and 1.0 μg/L and a recovery between 83.2% and 119.2%, it is used for the analysis of trace amounts of Fur and Bum in weight loss products and environmental water. The functionalized corncob has potential application for the adsorption of diuretics, and the metal ions implantation in MOFs provides a promising strategy for enhancing extraction capacity.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Xianliang Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| |
Collapse
|
4
|
Chen Q, You N, Zhao Y, Liang C, Liu Z, Zhao W. Polyethyleneimine grafted H
2
O
2
‐oxidized starch nanocrystals as a biomaterial for adsorptive removal of Cr(VI). STARCH-STARKE 2022. [DOI: 10.1002/star.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- QiJie Chen
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| | - Na You
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| | - YaLan Zhao
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| | - ChunYan Liang
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| | - Zhuo Liu
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| | - WenGuang Zhao
- Contact information: School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 People's Republic of China
| |
Collapse
|
5
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
6
|
Chen Q, Gao X, Zhao Y, Liu Z, Xie G, Liang C, Wang J. Starch Nanocrystals Grafted with Epichlorohydrin Dimethylamine for Methyl Blue Dye Removal. STARCH-STARKE 2022. [DOI: 10.1002/star.202100200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- QiJie Chen
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - Xin Gao
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - YaLan Zhao
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - Zhuo Liu
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - Guangyang Xie
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - ChunYan Liang
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| | - JianHui Wang
- School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha Hunan Province 410114 P. R. China
| |
Collapse
|
7
|
Polyethyleneimine grafted starch nanocrystals as a novel biosorbent for efficient removal of methyl blue dye. Carbohydr Polym 2021; 273:118579. [PMID: 34560983 DOI: 10.1016/j.carbpol.2021.118579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
In this paper, a novel biosorbent of SNCs-PEI was successfully prepared by grafting polyethylenimine (PEI) onto the starch nanocrystals (SNCs) using glutaraldehyde as a crosslinking agent. The optimal preparation conditions of SNCs-PEI were determined by the orthogonal experiments of the three-factor and three-level, and the SNCs-PEI was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The zeta potential of SNCs-PEI was +26.3 mV (pH 7), which had a good adsorption performance for the anionic dye methyl blue (MB). The adsorption kinetics and isotherm of MB by SNCs-PEI were studied. At the temperature of 25, 30 and 35 °C, its maximum adsorption capacity was 337.84, 377.36 and 383.14 mg g-1, respectively. The adsorption of MB by the SNCs-PEI was a spontaneous and endothermic process according to the thermodynamic analysis.
Collapse
|
8
|
Fu J, Zhang Z, Ren Q. The Future of Biomass Utilization Technologies Special Issue Editorial. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| |
Collapse
|