1
|
Rahimi FA, Singh A, Jena R, Dey A, Maji TK. GFP Chromophore Integrated Conjugated Microporous Polymers toward Bioinspired Photocatalytic CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43171-43179. [PMID: 39135392 DOI: 10.1021/acsami.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 μmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
2
|
Song M, Li J, Xu M, Xu Z, Song X, Liu X, Zhang J, Yang Y, Xie X, Zhou W, Huo P. Facile synthesis of MOF-808/RGO-based 3D macroscopic aerogel for enhanced photoreduction CO 2. J Colloid Interface Sci 2024; 668:471-483. [PMID: 38691957 DOI: 10.1016/j.jcis.2024.04.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Three-dimensional (3D) macroscopic aerogels have emerged as a critical component in the realm of photocatalysis. Maximizing the integration of materials can result in enhanced efficiency and selectivity in photocatalytic processes. In this investigation, we fabricated MOF-808/reduced graphene oxide (RGO) 3D macroscopic aerogel composite materials employing the techniques of hydrothermal synthesis and freeze-drying. The results revealed that the macroscopic aerogel material exhibited the highest performance in CO2 reduction to CO, particularly when the concentration of RGO was maintained at 5 mg mL-1. In addition, we synthesized powder materials of MR-5 composite photocatalysts and conducted a comparative analysis in terms of photocatalytic CO2 reduction performance and electron transfer efficiency. The results showthat the macroscopic aerogel material boasts a high specific surface area, an abundant internal pore structure, and increased active sites. These attributes collectively enhance light energy utilization, and electron transfer rates, thereby, improving photothermal and photoelectric conversion efficiencies. Furthermore, we conducted in-situ FT-IR measurements and found that the M/R-5 aerogel exhibited the best CO2 adsorption capacity under a CO2 flow rate of 10 mL min-1. The density functional theory results demonstrate the correlation between the formation pathway of the product and the charge transfer pathway. This study provides useful ideas for realizing photocatalytic CO2 reduction of macroscopic aerogel materials in gas-solid reaction mode.
Collapse
Affiliation(s)
- Mingming Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinze Li
- China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China; China Construction Eco-environmental Protection Technology CO., LTD., Suzhou 215124, China
| | - Mengyang Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zenghui Xu
- China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China; China Construction Eco-environmental Protection Technology CO., LTD., Suzhou 215124, China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinmin Xie
- Liuzhou Railway Vocational Technical College, Liuzhou 545616, China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Parambil SRV, Rahimi FA, Ghosh R, Nath S, Maji TK. Pore-Confined π-Chromophoric Tetracene as a Visible Light Harvester toward MOF-Based Photocatalytic CO 2 Reduction in Water. Inorg Chem 2023; 62:19312-19322. [PMID: 37963226 DOI: 10.1021/acs.inorgchem.3c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Integrating photoactive π-chromophoric guest molecules inside the MOF nanopore can result in the emergence of light-responsive features, which in turn can be utilized for developing photoactive materials with inherent properties of MOF. Herein, we report the confining of π-chromophoric tetracene (TET) molecules inside the nanospace of postmodified Zr-MOF-808 (Zr-MOF) with MBA molecules (MBA = 2-(5'-methyl-[2,2'-bipyridine]-5-yl)acetic acid) for effectively utilizing its light-harvesting properties toward photocatalytic CO2 reduction. The confinement of the TET molecules as a photosensitizer and the covalent grafting of a catalytically active [Re(MBA)(CO)3Cl] complex, postsynthetically, result in a single integrated catalytic system named Zr-MBA-TET-Re-MOF. Photoreduction of CO2 over Zr-MBA-TET-Re-MOF showed the evolution of 805 μmol g-1 CO with 99.9% selectivity after 10 h of continuous visible light irradiation in water without any additional sacrificial electron donor and having the apparent quantum efficiency of 1.3%. In addition, the catalyst demonstrated an appreciable activity even under direct sunlight irradiation in aqueous medium with a maximum production of 362.7 μmol g-1 CO, thereby mimicking artificial photosynthesis. Moreover, electron transfer from TET to the catalytic center was supported by the formation of photoinduced TET radical cation, as inferred from in situ UV-vis spectra, electron paramagnetic resonance (EPR) analysis, and transient absorption (TA) studies. Additionally, the in situ diffuse reflectance infrared Fourier transform (DRIFT) measurements support that the photoreduction of CO2 to CO proceeds via *COOH intermediate formation. The close proximity of the light-harvesting molecule and catalytic center facilitated facile electron transfer from the photosensitizer to the catalyst during the CO2 reduction.
Collapse
Affiliation(s)
- Sneha Raj V Parambil
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|
4
|
Karmakar S, Barman S, Rahimi FA, Rambabu D, Nath S, Maji TK. Confining charge-transfer complex in a metal-organic framework for photocatalytic CO 2 reduction in water. Nat Commun 2023; 14:4508. [PMID: 37495574 PMCID: PMC10371996 DOI: 10.1038/s41467-023-40117-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
In the quest for renewable fuel production, the selective conversion of CO2 to CH4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH4 from CO2. The reported material produces 7.3 mmol g-1 of CH4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Collapse
Affiliation(s)
- Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Soumitra Barman
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sukhendu Nath
- Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
5
|
Faillace MS, Dolgopolova EA, Ceballos NM, Ruiz Pereyra EN, Lanfri L, Argüello GA, Burgos Paci M, Shustova NB, Peláez WJ. GFP-related chromophores: photoisomerization, thermal reversion, and DNA labelling. Phys Chem Chem Phys 2023. [PMID: 37376968 DOI: 10.1039/d3cp01655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Due to the pronounced effect of the confined environment on the photochemical properties of 4-hydroxybenzylidene imidazolinone (HBI), a GFP-related chromophore, imidazolidinone and imidazothiazolone analogues have been studied as fluorescent probes. Their photoisomerization and their thermal reversion were studied under 365-nm-irradiation, resulting in observation of an enthalpy-entropy compensation effect. Theoretical studies were carried out to shed light on the thermal reversion mechanism. Moreover, photophysical studies of benzylidene imidazothiazolone in the presence of dsDNA revealed fluorescence enhancement. The prepared compounds could be considered as a valuable tool for the detailed investigation of physicochemical, biochemical, or biological systems.
Collapse
Affiliation(s)
- Martin S Faillace
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Ekaterina A Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Noelia M Ceballos
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - E Nahir Ruiz Pereyra
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Lucia Lanfri
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Gustavo A Argüello
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Maximiliano Burgos Paci
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Walter J Peláez
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
6
|
Karmakar S, Ghosh A, Rahimi FA, Rawat B, Maji TK. Complexing Eu 3+/Tb 3+ in a Nanoscale Postmodified Zr-MOF toward Temperature-Modulated Multispectrum Chromism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49014-49025. [PMID: 36278376 DOI: 10.1021/acsami.2c15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, extensive research has been directed toward the successful preparation of nanoscale luminescent thermometers with high sensitivities operative in a broad temperature range. To achieve this goal, we have devised a unique design and facile multistep synthesis of Zr-ctpy-NMOF@TbxEuy compounds by confining Ln-complexes (Ln = Eu3+/Tb3+) into a robust nanoscale Zr-NMOF (MOF-808) via postsynthetic modification. Covalent grafting of 4-(4'-carboxyphenyl)-2,2':6,2″terpyridine ligand (ctpy) with a high triplet state energy and corresponding immobilization of bimetallic Ln3+ ions resulted in yellow light-emitting Zr-ctpy-NMOF@Tb1.66Eu0.14 to achieve a sensitivity of 5.2% K-1 (thermal uncertainty dT < 1 K) operative over a broad temperature range of 25-400 K. To defeat the odds related to the detection of minute temperature changes using luminescent materials, we prepared a white light-emitting Zr-ctpy-NMOF@Tb1.4Eu0.31 that showed temperature-modulated multispectrum chromism where the color drastically changes from green (at 25 K, Q.Y.: 20.21%) to yellowish-green (at 200 K, Q.Y.: 23.13%) to white (at 300 K, Q.Y.: 26.4%) to orange (at 350 K, Q.Y.: 26.93%) and finally red (at 400 K, Q.Y.: 28.2%) with a high energy transfer efficiency of 49.8%, which is further supported by electron-phonon coupling.
Collapse
|
7
|
Ghosh A, Karmakar S, Rahimi FA, Roy RS, Nath S, Gautam UK, Maji TK. Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25220-25231. [PMID: 35613366 DOI: 10.1021/acsami.1c23458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insights into developing innovative routes for the stabilization of photogenerated charge-separated states by suppressing charge recombination in photocatalysts is a topic of immense importance. Herein, we report the synthesis of a metal-organic framework (MOF)-based composite where CdS nanoparticles (NPs) are confined inside the nanosized pores of Zr4+-based MOF-808, namely, CdS@MOF-808. Anchoring l-cysteine into the nanospace of MOF-808 via postsynthetic ligand exchange allows the capture of Cd2+ ions from their aqueous solution, which are further utilized for in situ growth of CdS NPs inside the nanosized MOF pores. The formation of CdS@MOF-808 opens up a possibility for visible-light photocatalysis as CdS NPs (1-2 nm) are a well-studied semiconductor system with a band gap of ∼2.6 eV. The confinement of the CdS NPs inside the MOF pores, close to the Zr4+ cluster, opens up a shorter electron transfer route from CdS to the catalytic Zr4+ cluster and shows a high rate of H2 evolution (10.41 mmol g-1 h-1) from water with a loading of 3.56 wt % CdS. In contrast, a similar composite in which CdS NPs are stabilized on the external surface of MOF-808 reveals poor activity (0.15 mmol g-1 h-1). CdS NPs stabilized on the MOF-808 surface show slower and inefficient electron transfer kinetics compared to CdS stabilized inside the nanospace of the MOF, as realized by the transient absorption measurements. Therefore, this work unveils the critical role of stabilizing the photosensitizer NPs in close proximity of the catalytic sites in MOF systems towards developing highly efficient H2 evolution photocatalysts.
Collapse
Affiliation(s)
- Adrija Ghosh
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Sanchita Karmakar
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Tapas Kumar Maji
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|
8
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Jaafar A, Platas-Iglesias C, Bilbeisi RA. Thiosemicarbazone modified zeolitic imidazolate framework (TSC-ZIF) for mercury(ii) removal from water. RSC Adv 2021; 11:16192-16199. [PMID: 35479125 PMCID: PMC9030954 DOI: 10.1039/d1ra02025k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIF-8), and their derivatives, have been drawing increasing attention due to their thermal and chemical stability. The remarkable stability of ZIF-8 in aqueous and high pH environments renders it an ideal candidate for the removal of heavy metals from wastewater. In this study, we present the preparation of novel aldehyde-based zeolitic imidazolate frameworks (Ald-ZIF) through the integration of mixed-linkers: 2-methylimidazole (MIM) and imidazole-4-carbaldehyde (AldIM). The prepared Ald-ZIFs were post-synthetically modified with bisthiosemicarbazide (Bisthio) and thiosemicarbazide (Thio) groups, incorporating thiosemicarbazone (TSC) functionalities to the core of the framework. This modification results in the formation of TSC-functionalized ZIF derivatives (TSC-ZIFs). Thiosemicarbazones are versatile metal chelators, hence, adsorption properties of TSC-ZIFs for the removal of mercury(ii) from water were explored. Removal of mercury(ii) from homoionic aqueous solutions, binary and tertiary systems in competition with lead(ii) and cadmium(ii) under ambient conditions and neutral pH are reported in this study. MIM3.5:Thio1:Zn improved the removal efficiency of mercury(ii) from water, up to 97% in two hours, with an adsorption capacity of 1667 mg g-1. Desorption of mercury(ii) from MIM3.5:Thio1:Zn was achieved under acidic conditions, regenerating MIM3.5:Thio1:Zn for five cycles of mercury(ii) removal. TSC-ZIF derivatives, designed and developed here, represent a new class of dynamically functionalized adsorption material displaying the advantages of simplicity, efficiency, and reusability.
Collapse
Affiliation(s)
- Amani Jaafar
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña 15071 A Coruña Galicia Spain
| | - Rana A Bilbeisi
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| |
Collapse
|
10
|
Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci 2020; 285:102286. [PMID: 33164780 DOI: 10.1016/j.cis.2020.102286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Green fluorescence proteins (GFP) are appealing to a variety of biomedical and biotechnology applications, such as protein fusion, subcellular localizations, cell visualization, protein-protein interaction, and genetically encoded sensors. To mimic the fluorescence of GFP, various compounds, such as GFP chromophores analogs, hydrogen bond-rich proteins, and aromatic peptidyl nanostructures that preclude free rotation of the aryl-alkene bond, have been developed to adapt them for a fantastic range of applications. Herein, we firstly summarize the structure and luminescent mechanism of GFP. Based on this, the design strategy, fluorescent properties, and the advanced applications of GFP-inspired fluorophores are then carefully discussed. The diverse advantages of bioinspired fluorophores, such as biocompatibility, structural simplicity, and capacity to form a variety of functional nanostructures, endow them potential candidates as the next-generation bio-organic optical materials.
Collapse
|