1
|
Yun X, Zhu Y, Wang Y, Fan Z, Zhou K, Hu H, Zhong H, Li H, Shi Y. Toward an Ideal Light Source for Indoor Photosynthesis: Broadband Red Emission in Zero-Dimensional Hafnium-Based Metal Halide (TPP) 2HfCl 6·4C 2H 3N:Sb 3. Inorg Chem 2024; 63:18304-18312. [PMID: 39292549 DOI: 10.1021/acs.inorgchem.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
With suitable electron-phonon coupling strength, a near-unity broadband photoluminescence quantum yield (PLQY) can be achieved in organic-inorganic hybrid metal halides (OIHMHs) via self-trapped exciton (STE) emission. However, it is still challenging to obtain high-quality red emission from OIHMHs with a desirable emission wavelength and high chemical stability, which hinders their practical application in high-performance displays, plant-growth lighting, and biomedical imaging. Herein, a series of hafnium-based zero-dimensional (TPP)2HfCl6·4C2H3N (TPP: tetraphenylphosphonium) single crystals with different Sb3+ doping levels are synthesized. The Sb3+-doped (TPP)2HfCl6·4C2H3N shows dual-band red emission with a full width at half-maximum of 178 nm and a high PLQY of 91.09%. This broad dual-band emission originates from dopant-induced extrinsic free excitons and STEs. Furthermore, (TPP)2HfCl6·4C2H3N:Sb3+ was employed as a luminescence converter in a light-emitting diode (LED) for plant growth regulation. A correlated color temperature of 4055 K and a color rendering index of 82.13 were achieved upon excitation of the LED at 365 nm. These results provide fundamental perspectives on the emission behavior of Sb3+-doped OIHMHs and illustrate their promise for use in plant-growth lighting.
Collapse
Affiliation(s)
- Xiangyan Yun
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yanrong Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zutao Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Wang YY, Feng Y, Liu XT, Cao LY, Xu QY, Qu H, Zhao T, Li Y, Lin G. Organic-Inorganic Hybrid Halide X-ray Scintillator with High Antiwater Stability. Inorg Chem 2024; 63:16224-16232. [PMID: 39151039 DOI: 10.1021/acs.inorgchem.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
In recent years, low-dimensional organic-inorganic hybrid metal halides have garnered significant attention for optoelectronic applications due to their exceptional photophysical properties, despite their persistent challenge of low stability. Addressing this challenge, our study introduces 1-[5-(trifluoromethyl)pyridin-2-yl]piperazinium (TFPP) as a cation, harvesting a novel one-dimensional hybrid cadmium-based halide semiconductor (TFPP)CdCl4, which exhibits intense blue-light emission upon UV excitation. Additionally, (TFPP)CdCl4 demonstrates a high scintillation performance under X-ray excitation, producing 16600 ± 500 photons MeV-1 and achieving a low detection limit of 0.891 μGyair s-1. Notably, (TFPP)CdCl4 showcases remarkable stability against water, intense light sources, heating, and corrosive environments, positioning it as a promising candidate for optoelectronic applications. Through a blend of experimental techniques and theoretical analyses, including density functional theory calculations, we elucidate the unique photophysical properties and structural stability of (TFPP)CdCl4. These findings significantly contribute to the understanding of low-dimensional hybrid halide semiconductors, offering valuable insights into their potential application in advanced optoelectronic devices and paving the way for further research in this field.
Collapse
Affiliation(s)
- Yu-Yin Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Ying Feng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Tong Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Lin-Ying Cao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Qing-Ying Xu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hao Qu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Tong Zhao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yunyun Li
- Department of Applied Chemistry, Putian University, Putian 351100, China
| | - Guoming Lin
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| |
Collapse
|
3
|
Yang W, Dang P, Zhang G, Liu D, Wang Y, Wei Y, Lian H, Li G, Lin J. Multimode Luminescence Tailoring in PMA 4Na(In,Sb)Cl 8 Organic-inorganic Hybrid Metal Halide via Rigid Benzene Ring Induced Local Lattice Distortion. Angew Chem Int Ed Engl 2024:e202411136. [PMID: 39147700 DOI: 10.1002/anie.202411136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88 % was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1→1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing, low temperature anti-counterfeiting and WLED applications.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guodong Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongjie Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yingsheng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Wen X, Yi G, Zhang Z, Guo C, Zeng H, Huang L, Zou G, Lin Z. Amine-directed synthesis, valence state control, and optical properties of two new organic-inorganic tin chlorides. Dalton Trans 2024; 53:13195-13200. [PMID: 39046463 DOI: 10.1039/d4dt01919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Two organic-inorganic tin chlorides, namely (C9H26N3Cl)SnCl4 (1) and (C9H26N3Cl)SnCl6 (2), were prepared via valence state control using N,N,N',N'',N''-pentamethyldiethylenetriamine as a structure-directing agent. The two compounds have zero-dimensional structures crystallized in non-centrosymmetric orthorhombic space group Cmc21 and P212121, respectively. In compound 1, the divalent tin ion forms a seesaw coordination configuration with four chloride ions, whereas in compound 2, the tetravalent tin ion forms an octahedral coordination configuration with six chloride ions. The two compounds show a moderate second-harmonic generation response under 1064 nm laser irradiation. Notably, compound 2 displays a bright orange luminescence with a photoluminescence quantum yield of 19.67%. Theoretical calculations were performed to gain insights into the optical properties of the two compounds.
Collapse
Affiliation(s)
- Xuemei Wen
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Gangji Yi
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Caihong Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
5
|
Kong L, Peng H, Wei Q, Liang Q, Zhao J, Zou B. Efficient tunable white emission and multiple reversible photoluminescence switching in organic Tin(IV) chlorides via regulating the host lattice environment of antimony ions for multifunctional applications. J Colloid Interface Sci 2024; 666:560-571. [PMID: 38613978 DOI: 10.1016/j.jcis.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The host lattice environments of Sb3+ has a great influence on its photophysical properties. Here, we synthesized three zero-dimensional organic metal halides of (TPA)2SbCl5 (1), Sb3+-doped (TPA)SnCl5(H2O)·2H2O (Sb3+-2), and Sb3+-doped (TPA)2SnCl6 (Sb3+-3). Compared with the intense orange emission of 1, Sb3+-3 has smaller lattice distortion, thus effectively suppressing the exciton transformation from singlet to triplet self-trapped exciton (STE) states, which makes Sb3+-3 has stronger singlet STE emission and further bring a white emission with a photoluminescence quantum efficiency (PLQE) of 93.4%. Conversely, the non-emission can be observed in Sb3+-2 even though it has a similar [SbCl5]2- structure to 1, which should be due to its indirect bandgap characteristics and the effective non-radiative relaxation caused by H2O in the lattice. Interestingly, the non-emission of Sb3+-2 can convert into the bright emission of Sb3+-3 under TPACl DMF solution treatment. Meanwhile, the white emission under 315 nm excitation of Sb3+-3 can change into orange emission upon 365 nm irradiation, and the luminescence can be further quenched by the treatment of HCl. Therefore, a triple-mode reversible luminescence switch of off-onI-onII-off can be achieved. Finally, we demonstrated the applications of Sb3+-doped compounds in single-component white light illumination, latent fingerprint detection, fluorescent anti-counterfeiting, and information encryption.
Collapse
Affiliation(s)
- Linghang Kong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hui Peng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qihua Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Wang Y, Sun X, Shao T, Zhao D, Zhang L, Li Y, Dong Q, Liu C, Wang K, Xiao G, Zou B. Band-Gap Narrowing and Electric Transport Regulation of Hybrid Perovskites via Pressure Engineering. Inorg Chem 2024; 63:11431-11437. [PMID: 38814822 DOI: 10.1021/acs.inorgchem.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Lead-free organic-inorganic hybrid perovskites are one class of promising optoelectronic materials that have attracted much attention due to their outstanding stability and environmentally friendly nature. However, the intrinsic band gap far from the Shockley-Queisser limit and the inferior electrical properties largely limit their applicability. Here, a considerable band-gap narrowing from 2.43 to 1.64 eV with the compression rate up to 32.5% is achieved via high-pressure engineering in the lead-free hybrid perovskite MA3Sb2I9. Meanwhile, the electric transport process changes from the initial interaction of both ions and electrons to only the contribution of electrons upon compression. The alteration in electrical characteristics is ascribed to the vibration limitation of organic ions and the enhanced orbital overlap, resulting from the reduction of the Sb-I bond length through pressure-induced phase transitions. This work not only systematically investigates the correlation between the structural and optoelectronic properties of MA3Sb2I9 but also provides a potential pathway for optimizing electrical properties in lead-free hybrid perovskites.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xuening Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tianyin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Dianlong Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yongguang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingfeng Dong
- State Key Laboratory of Supermolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Cailong Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Kai Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Wen X, Wang J, Zhang Z, Han X, Zeng H, Zou G, Xu D, Lin Z. A Three-Dimensional Open-Framework Tin(II) Sulfate with Near-Unity Photoluminescence Quantum Yield. Inorg Chem 2024; 63:8521-8525. [PMID: 38691447 DOI: 10.1021/acs.inorgchem.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A new open-framework tin(II) sulfate, formulated as C4H12N2·Sn(SO4)2·H2O, was prepared under the structure-directing effect of piperazine. This compound features a 3D structure with 16-ring channels. Under ultraviolet light irradiation, it emits bright yellow luminescence with a near-unity photoluminescence quantum yield. Theoretical calculations were carried out to understand the luminescence mechanism.
Collapse
Affiliation(s)
- Xuemei Wen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiangyu Han
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dingguo Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Yu S, Peng H, Wei Q, Li T, Huang W, He X, Du Z, Zhao J, Zou B. Realizing efficient broadband near-infrared emission and multimode photoluminescence switching via coordination structure modulation in Sb 3+-doped 0D organic metal chlorides. MATERIALS HORIZONS 2024; 11:2230-2241. [PMID: 38421281 DOI: 10.1039/d3mh01962d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Recently, organic Sb(III)-based metal halides have achieved significant results in the visible light region due to their efficient emission. However, realizing efficient broadband near-infrared (NIR) emission in such materials is a great challenge. Herein, we developed three different NIR emitters via a coordination structure modulation strategy in Sb3+-doped zero-dimensional organic metal chlorides of (C20H20P)2MnCl4, (C20H20P)2ZnCl4, and (C20H20P)2CdCl4 with tetrahedral structure. More specifically, after the dopant Sb3+ is inserted into the host lattice, the coordination structures of Sb3+ ions can change from [SbCl5]2- square-pyramidal configuration to [SbCl4]- clusters, which will bring a larger lattice distortion degree to the excited state compared to the ground state, resulting in a larger Stokes shift. Thus, efficient NIR emission with near-unity photoluminescence quantum yield (PLQY) can be obtained in Sb3+-doped compounds under 365 nm excitation. Moreover, Sb3+-doped NIR emitters also show remarkable stabilities, which prompts us to fabricate NIR phosphor conversion light-emitting diodes (pc-LEDs) and demonstrate their application in night vision. More interestingly, the Sb3+-doped (C20H20P)2MnCl4 shows tunable emission characteristics, which can be tuned from green to greenish-yellow, orange, red, and NIR emission under different external stimuli, and thus we can demonstrate the applications of this compound in quintuple-mode fluorescence anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Shuiyue Yu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Hui Peng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tongzhou Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Weiguo Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Xuefei He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Zhentao Du
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Jialong Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Guo Y, Yu Z, Wang K, Dong M, Li X, Yang X, Zhang Y. Broadband Green Luminescence and Phase Transition in Low-Dimensional Organic-Inorganic Hybrid Iodate. Inorg Chem 2024; 63:7799-7805. [PMID: 38627892 DOI: 10.1021/acs.inorgchem.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Organic-inorganic hybrid iodide systems, which can form highly ordered chromophores and uniformly oriented transition dipole moments, serve as optimal host-guest systems for the fabrication of micrometer-scale optical devices. In particular, those with low-dimensional structures can exhibit strong quantum-limited and highly localized charges, enabling the generation of high exciton energies and stable excitation emission. In this study, we report a novel instance of an organic-inorganic hybrid iodate, (C13H11N2)(IO3), which was synthesized by incorporating the optically active organic compound, 9-aminoacridine. Upon crystallization in the monoclinic space group P21/c, this compound exhibits a direct optical band gap of 2.66 eV. The incorporation of discrete organic units within the low-dimensional structures induces pronounced local charges, culminating in broadband green luminescence with a peak at 540 nm under UV excitation. This corresponds to the CIE coordinates (0.37, 0.56). A potential phase transition was inferred through a comprehensive analysis of the variable temperature structure and emission spectra. Furthermore, first-principles calculations revealed the pivotal role of organic cations in facilitating broadband luminescence.
Collapse
Affiliation(s)
- Yangwu Guo
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Ziwei Yu
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Kui Wang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Meiqiu Dong
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Xinyi Li
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Xinglong Yang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| | - Yu Zhang
- Ji Hua Laboratory, Foshan 528200, Guangdong, P. R. China
| |
Collapse
|
10
|
Tang H, Zheng P, Xiao Z, Yuan K, Zhang H, Zhao X, Zhou W, Wang S, Liu W. Crystal Structure and Optical Properties Characterization in Quasi-0D Lead-Free Bromide Crystals (C 6H 14N) 3Bi 2Br 9·H 2O and (C 6H 14N) 3Sb 3Br 12. Inorg Chem 2024; 63:4747-4757. [PMID: 38412230 DOI: 10.1021/acs.inorgchem.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Low dimensional organic inorganic metal halide materials have shown broadband emission and large Stokes shift, making them widely used in various fields and a promising candidate material. Here, the zero-dimensional lead-free bromide single crystals (C6H14N)3Bi2Br9·H2O (1) and (C6H14N)3Sb3Br12 (2) were synthesized. They crystallized in the monoclinic crystal system with the space group of P21 and P21/n, respectively. Through ultraviolet-visible-near-infrared (UV-vis-NIR) absorption analysis, the band gaps of (C6H14N)3Bi2Br9·H2O and (C6H14N)3Sb3Br12 are found to be 2.75 and 2.83 eV, respectively. Upon photoexcitation, (C6H14N)3Bi2Br9·H2O exhibit broad-band red emission peaking at 640 nm with a large Stokes shift of 180 nm and a lifetime of 2.94 ns, and the emission spectrum of (C6H14N)3Sb3Br12 are similar to those of (C6H14N)3Bi2Br9·H2O. This exclusive red emission is ascribed to the self-trapping exciton transition caused by lattice distortion, which is confirmed through both experiments and first-principles calculations. In addition, due to the polar space group structure and the large spin-orbit coupling (SOC) associated with the heavy elements of Bi and Br of crystal 1, an obvious Rashba effect was observed. The discovery of organic inorganic metal bromide material provides a critical foundation for uncovering the connection between 0D metal halide materials' structures and properties.
Collapse
Affiliation(s)
- Hao Tang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Pengfei Zheng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Xiao
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China
| | - Kejia Yuan
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Hanwen Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaochen Zhao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyu Wang
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China
| | - Weifang Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Lv JN, Zhang J, Liu YM, Zhang SY, Deng XY, Xu M, Lei XW, Chen ZW, Yue CY. Zero-dimensional hybrid tin halides with stable broadband light emissions. Dalton Trans 2024; 53:4698-4704. [PMID: 38362640 DOI: 10.1039/d3dt03937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Considering the instability and toxicity of 3D Pb-based perovskite nanocrystals, lead-free low-dimensional organic-inorganic hybrid metal halides have attracted widespread attention as potential substitutes. Herein, two new tin-based 0D halides [H4BAPP]SnBr5·Br and [H4BAPP]SnCl5·Cl·H2O (BAPP = 1,4-bis(3-aminopropyl)piperazine) were synthesized successfully based on [SnX5]3- as an emission center. Typically, [H4BAPP]SnBr5·Br and [H4BAPP]SnCl5·Cl·H2O display broadband yellow and yellow-green light emissions originating from the radiative recombination of self-trapped excitons (STEs). The photoluminescence quantum yields (PLQYs) of the two compounds were calculated to be 19.27% and 2.36%, respectively. Furthermore, the excellent chemical and thermal stability and broadband light emissions reveal their potential application in solid-state white lighting diodes.
Collapse
Affiliation(s)
- Jing-Ning Lv
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yu-Meng Liu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Shao-Ya Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xiang-Yuan Deng
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Man Xu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Zhi-Wei Chen
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| |
Collapse
|
12
|
Zhang R, Xie H, Zhao Q, Tang Z, Yang C, Su B. Zero-Dimensional Hybrid Antimony Chloride with Near-Unity Broad-Band Orange-Red Emission toward Solid-State Lighting. Inorg Chem 2023; 62:19771-19779. [PMID: 37988061 DOI: 10.1021/acs.inorgchem.3c03295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Zero-dimensional (0D) hybrid metal halides are attractive owing to their distinctive structure as well as photoluminescence (PL) characteristics. To discover 0D hybrid metal halides with high photoluminescence quantum yield and good stability is of great significance for white light-emitting diodes (LEDs). Herein, a novel hybrid antimony chloride (CTP)2SbCl5 is synthesized, which shows a bright broad-band orange-red emission peaking at 620 nm under the low energy excitation (365 nm), achieving an excellent photoluminescence quantum yield of 96.8%. In addition, (CTP)2SbCl5 shows an additional emission peaking at 470 nm when excited at high energy (323 nm). PL spectra and density functional theory results demonstrate that the observed dual-band emission originates from the singlet and triplet self-trapped excitons confined in isolated [SbCl5]2- square pyramids. Moreover, (CTP)2SbCl5 presents relatively superior air stability, and the PL intensity still maintains 78% of the initial PL intensity when exposed to the air for above 2 weeks. Benefiting from high-efficiency PL emission and good stability of (CTP)2SbCl5, a stable warm white LED device with a 92.3% color rendering index was prepared by coating blue phosphor BaMgAl10O17:Eu2+, green (Sr,Ba)2SiO4:Eu2+, and orange-red (CTP)2SbCl5 on a 365 nm LED chip. This work provides an efficient luminescent material and also demonstrates the potential application of 0D hybrid antimony chloride in solid-state lighting.
Collapse
Affiliation(s)
- Ruiqing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Huidong Xie
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Qiyu Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Zuobin Tang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Chang Yang
- Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Binbin Su
- Department of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, PR China
| |
Collapse
|
13
|
Huang T, Zou B. Luminescent Behavior of Sb 3+-Activated Luminescent Metal Halide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2867. [PMID: 37947712 PMCID: PMC10649199 DOI: 10.3390/nano13212867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the development of such materials. Recently, Sb3+-activated luminescent metal halide perovskite materials with low toxicity, high efficiency, broadband, large Stokes shift, and emission wavelengths covering the entire visible and near-infrared regions have been considered one of the most likely luminescent materials to replace lead halide perovskites. This review reviews the synthesis, luminescence mechanism, structure, and luminescence properties of the compounds. The basic luminescence properties of Sb3+-activated luminescent metal halide perovskites and their applications in WLED, electroluminescence LED, temperature sensing, optical anti-counterfeiting, and X-ray scintillators are introduced. Finally, the development prospects and challenges of Sb3+-activated luminescent metal halide perovskites are discussed.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China;
| |
Collapse
|
14
|
Chang T, Dai Y, Wei Q, Xu X, Cao S, Zou B, Zhang Q, Zeng R. Temperature-Dependent Reversible Optical Properties of Mn-Based Organic-Inorganic Hybrid (C 8H 20N) 2MnCl 4 Metal Halides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5487-5494. [PMID: 36652605 DOI: 10.1021/acsami.2c20885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic-inorganic metal halides (OIMHs) have abundant optical properties and potential applications, such as light-emitting diodes, displays, solar cells, and photodetectors. Herein, we report zero-dimensional Mn-based OIMH (C8H20N)2MnCl4 single crystals synthesized by a simple slow evaporation method, which exhibit intense green emission at 520 nm originating from 4T1-6A1 transition of Mn2+ ions. Large organic cations in the crystal structure result in the isolated [MnCl4]2- tetrahedrons, and the closest Mn-Mn distance reaches 9.07 Å, which effectively inhibits the migration of excitation energy between adjacent Mn2+ emission centers, thus achieving a high quantum yield (∼87%) and a long photoluminescence (PL) lifetime (3.42 ms). The different optical and structural properties at low and high temperatures are revealed by temperature-dependent PL and X-ray diffraction spectra. The PL spectra and lifetimes under the heating and cooling processes indicate that the optical property transitions are reversible at 220/240 K. Our work provides a promising strategy for building multifunctional optoelectronic materials and insights into the understanding convertible photophysical properties from isomers of metal halides.
Collapse
Affiliation(s)
- Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Yarui Dai
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Xing Xu
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| | - Qinglin Zhang
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
15
|
He N, Gong P, Zhang X, Liu Y, Dong L, Lin Z. (C 5N 2H 14)GeBr 4: A 2D Organic Germanium Bromide Perovskite with Strong Orange Photoluminescence Properties. Inorg Chem 2023; 62:823-829. [PMID: 36602526 DOI: 10.1021/acs.inorgchem.2c03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hybrid organic-inorganic metal halide (OIMH) perovskites are regarded as potential photoluminescent (PL) materials and have attracted intensive attention. Here, we select 1-methylpiperazine as an organic component and successfully obtain a two-dimensional (2D) Ge-based OIMH perovskite, (1-mpz)GeBr4. It features a 2D layered structure composed of distorted [GeBr6]4- octahedra with organic (C5H14N2)2+ located between the layers. (1-mpz)GeBr4 exhibits strong orange color under ultraviolet (UV) light and possesses good PL stability for over 2 months. The photoluminescence quantum efficiency is measured to be 7.15% at room temperature, which is the largest among all reported low-dimensional Ge-based perovskites. Experimental measurements, combined with first-principles calculations, reveal that its PL property is attributed to self-trapped excitons (STEs) from [GeBr6]4- groups. From the deduced structure-property relationship, Ge-based OIMH PL perovskites with good stability and high PL efficiency can be expected.
Collapse
Affiliation(s)
- Nan He
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pifu Gong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Zhang
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youquan Liu
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Dong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheshuai Lin
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Shao T, Ni HF, Su CY, Jia QQ, Xie LY, Fu DW, Lu HF. Integrated Reversible Thermochromism, High T c , Dielectric Switch and Narrow Band Gap in One Multifunctional Ferroic. Chemistry 2022; 28:e202202533. [PMID: 36082618 DOI: 10.1002/chem.202202533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
17
|
Mandal A, Roy S, Mondal A, Gupta S, Pal B, Bhattacharyya S. Spacer Switched Two-Dimensional Tin Bromide Perovskites Leading to Ambient-Stable Near-Unity Photoluminescence Quantum Yield. J Phys Chem Lett 2022; 13:9103-9113. [PMID: 36154102 DOI: 10.1021/acs.jpclett.2c02500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Semiconductor nanostructures with near-unity photoluminescence quantum yields (PLQYs) are imperative for light-emitting diodes and display devices. A PLQY of 99.7 ± 0.3% has been obtained by stabilizing 91% Sn2+ in the Dion-Jacobson (8N8)SnBr4 (8N8-DJ) perovskite with 1,8-diaminooctane (8N8) spacer. The PLQY is favored by a longer spacer molecule and out-of-plane octahedral tilting. The PLQY shows one-month ambient stability under high relative humidity (RH) and temperature. With n-octylamine (8N) spacer, Ruddlesden-Popper (8N)2SnBr4 (8N-RP) also shows PLQY of 91.7 ± 0.6%, but it has poor ambient stability. The 5-300 K PL experiments decipher the self-trapped excitons (STEs) where the self-trapping depth is 25.6 ± 0.4 meV below the conduction band because of strong carrier-phonon coupling. The microsecond long-lived STE dominates over the band edge (BE) peaks at lower excitation wavelengths and higher temperatures. The higher PLQY and stability of 8N8-DJ are due to the stronger interaction between SnBr64- octahedra and 8N8 spacer, leading to a rigid structure.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Samrat Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Anamika Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Bipul Pal
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
18
|
Zhang L, Luo Z, Wang W, Liu Y, He X, Quan Z. Organic Cation-Directed Modulation of Emissions in Zero-Dimensional Hybrid Tin Bromides. Inorg Chem 2022; 61:14857-14863. [PMID: 36067388 DOI: 10.1021/acs.inorgchem.2c02438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zero-dimensional hybrid metal halides (0D HMHs) are attractive due to their intriguing self-trapped exciton (STE) emission properties. However, the effect of organic cations on the emission of 0D HMHs is relatively underexplored. Herein, we report two types of 0D hybrid tin bromides, (BMe)2SnBr6 (BMe = C8N2H18) and (MeH)2SnBr6 (MeH = C7N2H16), which share similar structural features with different hydrogen bonding (HB) interactions between [SnBr6]4- anions and organic cations. The (BMe)2SnBr6 with weak HB interactions exhibits only STE emission, while the (MeH)2SnBr6 exhibits both STE and charge transfer exciton emissions owing to the strong HB interactions, resulting in an excitation-dependent emission at cryogenic conditions. Detailed structural analyses and Hirshfeld surface calculations confirm that the enhanced HB interactions are essential to obtain the multiple emissions in (MeH)2SnBr6.
Collapse
Affiliation(s)
- Liming Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang 150001, China.,Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
19
|
Zhang ZC, Zhang T, Su CY, Lun MM, Zhang Y, Fu DW, Wu Q. Competitive Dual-Emission-Induced Thermochromic Luminescence in Organic-Metal Halides. Inorg Chem 2022; 61:13322-13329. [PMID: 35976811 DOI: 10.1021/acs.inorgchem.2c01182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lead-free Halides, especially Mn-based ones, are preferred as hotspots in the exploration of photoluminescent materials. However, there are few reports on sensitive reversible thermochromism and switchable dual emission originating from self-trapped exciton emission in pure Mn-Based materials. Here, we report a new Mn-based hybrid material [TMPA]2MnI4 (TMPA = trimethylphenylammonium), which shows two emission peaks at 545 and 660 nm benefitting from the d-d orbital transition of Mn2+ and the generation of self-trapped excitons, respectively. Due to the different sensitivity to temperature, the stages of thermal activation and thermal quenching of the two emission types are also inconsistent, showing a certain competition relationship and dominating the emission colors in different temperature ranges, resulting in adjustable green-orange-green thermochromic luminescence from 100 to 403 K (both high and low temperatures correspond to green, and orange is displayed at near room temperature). Therefore, thermochromic luminescence can be easily achieved by controlling the temperature under the guidance of excited states. This work provides new insights into the synthesis and application of thermochromic materials. Therefore, it is certain that regulating temperature while being guided by excited states will achieve thermochromic luminescence. This research offers fresh perspectives on the development and potential of thermochromic materials.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| |
Collapse
|
20
|
Su B, Geng S, Xiao Z, Xia Z. Highly Distorted Antimony(III) Chloride [Sb 2 Cl 8 ] 2- Dimers for Near-Infrared Luminescence up to 1070 nm. Angew Chem Int Ed Engl 2022; 61:e202208881. [PMID: 35737598 DOI: 10.1002/anie.202208881] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/26/2022]
Abstract
Zero-dimensional (0D) hybrid metal halides with unique compositional and structural tunability appear as an emerging class of luminescent materials, but near-infrared (NIR) emitters therein are largely unexplored to date. This study presents three novel 0D hybrid antimony chlorines with edge-sharing [Sb2 Cl8 ]2- dimers, showing unusual room-temperature broadband NIR emission with the maximum emission wavelength up to 1070 nm. Photoluminescence studies and density functional theory calculation demonstrate that the emissions originate from the highly localized excitons, and that the confined [Sb2 Cl8 ]2- dimers in these structures show low symmetry and a large degree of structural freedom. These hybrid antimony chlorines with [Sb2 Cl8 ]2- dimers expand the range of new NIR materials in 0D metal halides.
Collapse
Affiliation(s)
- Binbin Su
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fibre Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shining Geng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fibre Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.,School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
21
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond, Together with Other Non-Covalent Interactions, in the Rational Design of One-, Two- and Three-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite Semiconducting Materials, and Beyond. Int J Mol Sci 2022; 23:8816. [PMID: 35955945 PMCID: PMC9369011 DOI: 10.3390/ijms23158816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Su B, Geng S, Xiao Z, Xia Z. Highly Distorted Antimony (III) Chloride [Sb2Cl8]2‐ Dimers for Near‐Infrared Luminescence up to 1070 nm. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Binbin Su
- SCUT: South China University of Technology school of materials science and eng CHINA
| | - Shining Geng
- HUST: Huazhong University of Science and Technology school of optoelectro CHINA
| | - Zewen Xiao
- HUST: Huazhong University of Science and Technology school of optoelectroc CHINA
| | - Zhiguo Xia
- University of Science and Technology Beijing School of materials science and engineering No. 30 Xueyuan RoadHaidian District 100083 Beijing CHINA
| |
Collapse
|
23
|
Luo Z, Liu Y, Liu Y, Li C, Li Y, Li Q, Wei Y, Zhang L, Xu B, Chang X, Quan Z. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200607. [PMID: 35233840 DOI: 10.1002/adma.202200607] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1- x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1- x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yejing Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qian Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Liming Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Xu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
24
|
Song Z, Yu B, Wei J, Li C, Liu G, Dang Y. Organic-Inorganic Hybrid Tin Halide Single Crystals with Sulfhydryl and Hydroxyl Groups: Formation, Optical Properties, and Stability. Inorg Chem 2022; 61:6943-6952. [PMID: 35485722 DOI: 10.1021/acs.inorgchem.2c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lead (Pb)-free halide hybrid materials have received a great deal of attention because of their potential in optoelectronic applications. However, heteroatom-based amine lead-free tin halide hybrid single crystals have not been well investigated yet. Detailed synthetic processes, growth, crystal structures, and stability of (ACH2CH2NH3)2SnBr6 (A = OH or SH) and (BCH2CH2NH3)2SnI4 (B = I or SH) single crystals were investigated. Interestingly, (IH3NCH2CH2SSCH2CH2NH3)2HPO3 exhibited orange-red photoluminescence (PL) at about 620 nm with an average PL lifetime of about 912 ns. (HSCH2CH2NH3)2SnI4 single crystals exhibited a PL peak at 620 nm with an average PL lifetime of about 0.607 ns. More importantly, (HSCH2CH2NH3)2SnI4 single crystals exhibited reversible red-black color transformations when exposed to a H3PO2 solution and an ambient atmosphere, which was attributed to oxidation from Sn2+ to Sn4+, rather than from I- to I3- (I2). The intriguing characteristics should provide guidance for further optoelectronic applications of these Pb-free halide hybrid materials.
Collapse
Affiliation(s)
- Zhexin Song
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, No. 57, Jingxuan West Road, Qufu 273165, P. R. China
| | - Binyin Yu
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, No. 57, Jingxuan West Road, Qufu 273165, P. R. China
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunlong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yangyang Dang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, No. 57, Jingxuan West Road, Qufu 273165, P. R. China.,Department of Chemistry, School of Sciences, and Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
25
|
Xu T, Li Y, Nikl M, Kucerkova R, Zhou Z, Chen J, Sun YY, Niu G, Tang J, Wang Q, Ren G, Wu Y. Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14157-14164. [PMID: 35302349 DOI: 10.1021/acsami.1c23839] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-dimensional organic-metal halides are regarded as an emerging class of X-ray scintillation materials, but most of the discovered compounds are confronted with challenges of toxicity and instability. To address these challenges, we herein report two lead-free zero-dimensional (0D) hybrid halides, (Bmpip)2Cu2Br4 and PPh4CuBr2 single crystals, grown by the low-cost solution-processing method. By single-crystal X-ray diffraction refinement, the crystal structures of (Bmpip)2Cu2Br4 and PPh4CuBr2 were determined to be orthorhombic and monoclinic crystal systems, respectively. (Bmpip)2Cu2Br4 and PPh4CuBr2 show broadband orange and yellow emissions peaking at 620 and 538 nm, respectively. Different from the emission nature of the recent reported Cu-based halide hybrids, both (Bmpip)2Cu2Br4 and PPh4CuBr2 emit from excitons bound to defects featuring spin-allowed transition, enabling them to possess fast scintillation decay time of tens of nanoseconds, respectively. In particular, the (Bmpip)2Cu2Br4 single crystal has a high photoluminescence quantum yield of 48.2%, a high scintillation yield of 16,000 photons/MeV, and a low detection limit of 710 nGyair/s. Due to the combination of nontoxicity, long-term stability, and decent detection performance, (Bmpip)2Cu2Br4 could be regarded as a promising X-ray scintillator.
Collapse
Affiliation(s)
- Tingting Xu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
- Shanghai Normal University, 100 Guilin Road, China, Shanghai 200234, P. R. China
| | - Yunyun Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Martin Nikl
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, Prague 16200, Czech Republic
| | - Romana Kucerkova
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, Prague 16200, Czech Republic
| | - Zhengyang Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Jie Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Yi-Yang Sun
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Qian Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Guohao Ren
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| | - Yuntao Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He-Shuo Road, Shanghai 201899, P.R. China
| |
Collapse
|
26
|
Peng H, Tian Y, Wang X, Huang T, Yu Z, Zhao Y, Dong T, Wang J, Zou B. Pure White Emission with 91.9% Photoluminescence Quantum Yield of [(C 3H 7) 4N] 2Cu 2I 4 out of Polaronic States and Ultra-High Color Rendering Index. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12395-12403. [PMID: 35235303 DOI: 10.1021/acsami.2c00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, cuprous halide perovskite-type materials have drawn tremendous attention for their intriguing optical properties. Here, a zero-dimensional (0D) Cu(I)-based compound of [(C3H7)4N]2Cu2I4 ([C3H7)4N]+ = tetrapropylammonium cation) was synthesized by a facile solution method, a monoclinic system of P21/n symmetry with a Cu2I42- cluster as the confined structure. The as-synthesized [(C3H7)4N]2Cu2I4 exhibits bright dual-band pure white emission with a photoluminescence quantum yield (PLQY) of 91.9% and CIE color coordinates of (0.33, 0.35). Notably, this compound also exhibits an ultrahigh color rendering index (CRI) of 92.2, which is comparable to the highest value of single-component metal halides reported recently. Its Raman spectra provide a clear spectral profile of strong electron-phonon interaction after [(C3H7)4N]+ incorporation, favoring the self-trapped exciton (STE) formation. [(C3H7)4N]2Cu2I4 can give dual-STE bands at the same time because of the Cu-Cu metal bond in a Cu2I42- cluster, whose populations could be scaled by temperature, together with the local dipole orientation modulation of neighboring STEs and phase transition related emission color coordinate change. Particularly, the outstanding chemical- and antiwater stability of this compound was also demonstrated. This work illustrates the potential of such cuprous halide perovskite-type materials in multifunctional applications, such as lighting in varied environments.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxin Wang
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yueting Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Low pH-induced lone-pair activity in the hybrid (C6H10N2)[SnCl3]Cl: Chemical study and physical characterizations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Sun C, Zhong QQ, Zhang X, Xiao PC, Cheng Y, Gao YJ, Liu GD, Lei XW. A Zero-Dimensional Hybrid Cadmium Perovskite with Highly Efficient Orange-Red Light Emission. Inorg Chem 2021; 60:18879-18888. [PMID: 34872252 DOI: 10.1021/acs.inorgchem.1c02661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-dimensional organic-inorganic hybrid metal halide materials have been extensively studied due to their excellent optoelectronic performances. Herein, by using the facile wet-chemistry method, we designed one new hybrid cadmium bromide of (H3AEP)2CdBr6·2Br based on discrete octahedral [CdBr6]4- units. Remarkably, the bulk crystal of (H3AEP)2CdBr6·2Br exhibits strong broadband orange-red light emission from the radiative recombination of self-trapped excitons (STEs) with a high photoluminescence quantum yield (PLQY) of 9%. Benefiting from the highly efficient luminescent performance, this 0D cadmium perovskite can be utilized as an excellent down-conversion red phosphor to assemble a white light-emitting diode, and a high color rendering index (CRI) of 93 is realized. As far as we know, this is the first orange-red light-emitting hybrid cadmium perovskite which promotes the full-color display in this system.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China.,Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China
| | - Qian-Qian Zhong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xin Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Pan-Chao Xiao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu-Jia Gao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Guo-Dong Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
29
|
Qi J, Wang S, Portniagin A, Kershaw SV, Rogach AL. Room Temperature Fabrication of Stable, Strongly Luminescent Dion-Jacobson Tin Bromide Perovskite Microcrystals Achieved through Use of Primary Alcohols. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2738. [PMID: 34685180 PMCID: PMC8539003 DOI: 10.3390/nano11102738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/05/2022]
Abstract
Lead-free two-dimensional metal halide perovskites have recently emerged as promising light-emitting materials due to their improved stability and attractive optical properties. Herein, a facile room temperature wet milling method has been developed to make Dion-Jacobson (DJ) phase ODASnBr4 perovskite microcrystals, whose crystallization was accomplished via the aid of introduced primary alcohols: ethanol, butanol, pentanol, and hexanol. Due to the strong intermolecular hydrogen bonding, the use of ethanol promoted the formation of non-doped ODASnBr4 microcrystals, with an emission peaked at 599 nm and a high photoluminescence quantum yield (PL QY) of 81%. By introducing other primary alcohols with weaker intermolecular hydrogen bonding such as butanol, pentanol, and hexanol, [SnBr6]4- octahedral slabs of the DJ perovskite microcrystals experienced various degrees of expansion while forming O-H…Br hydrogen bonds. This resulted in the emission spectra of these alcohol-doped microcrystals to be adjusted in the range from 572 to 601 nm, while keeping the PL QY high, at around 89%. Our synthetic strategy provides a viable pathway towards strongly emitting lead-free DJ perovskite microcrystals with an improved stability.
Collapse
Affiliation(s)
| | | | | | | | - Andrey L. Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (J.Q.); (S.W.); (A.P.); (S.V.K.)
| |
Collapse
|
30
|
Trifiletti V, Asker C, Tseberlidis G, Riva S, Zhao K, Tang W, Binetti S, Fenwick O. Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. FRONTIERS IN ELECTRONICS 2021. [DOI: 10.3389/felec.2021.758603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent decades, many technological advances have been enabled by nanoscale phenomena, giving rise to the field of nanotechnology. In particular, unique optical and electronic phenomena occur on length scales less than 10 nanometres, which enable novel applications. Halide perovskites have been the focus of intense research on their optoelectronic properties and have demonstrated impressive performance in photovoltaic devices and later in other optoelectronic technologies, such as lasers and light-emitting diodes. The most studied crystalline form is the three-dimensional one, but, recently, the exploration of the low-dimensional derivatives has enabled new sub-classes of halide perovskite materials to emerge with distinct properties. In these materials, low-dimensional metal halide structures responsible for the electronic properties are separated and partially insulated from one another by the (typically organic) cations. Confinement occurs on a crystal lattice level, enabling bulk or thin-film materials that retain a degree of low-dimensional character. In particular, quasi-zero dimensional perovskite derivatives are proving to have distinct electronic, absorption, and photoluminescence properties. They are being explored for various technologies beyond photovoltaics (e.g. thermoelectrics, lasing, photodetectors, memristors, capacitors, LEDs). This review brings together the recent literature on these zero-dimensional materials in an interdisciplinary way that can spur applications for these compounds. The synthesis methods, the electrical, optical, and chemical properties, the advances in applications, and the challenges that need to be overcome as candidates for future electronic devices have been covered.
Collapse
|
31
|
Kundu J, Das DK. Low Dimensional, Broadband, Luminescent Organic‐Inorganic Hybrid Materials for Lighting Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Janardan Kundu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| | - Deep Kumar Das
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| |
Collapse
|
32
|
Peng H, Wang X, Zhang Z, Tian Y, Xiao Y, Hu J, Wang J, Zou B. Bulk assembly of a 0D organic tin(ii)chloride hybrid with high anti-water stability. Chem Commun (Camb) 2021; 57:8162-8165. [PMID: 34318799 DOI: 10.1039/d1cc02814f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A lead-free compound, (TBAC)SnCl3 (TBAC = tetrabutylammonium chloride), with high anti-water stability was reported, which can be stable in water for 24 hours. Upon photoexcitation, this compound exhibits a green photoluminescence (PL) centered at 523 nm with a larger Stokes shift of 260 nm at room temperature (RT), stemming from self-trapped exciton (STE) emission.
Collapse
Affiliation(s)
- Hui Peng
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wei Q, Chang T, Zeng R, Cao S, Zhao J, Han X, Wang L, Zou B. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA) 2SbCl 5·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability. J Phys Chem Lett 2021; 12:7091-7099. [PMID: 34292739 DOI: 10.1021/acs.jpclett.1c02119] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead-free lower-dimensional organic-inorganic metal halide materials have recently triggered intense research because of their excellent photophysical properties and chemical stability. Herein, we report a novel zero-dimensional (0D) organic-inorganic hybrid single crystal (TMA)2SbCl5·DMF (TMA = N(CH3)3, DMF= HCON(CH3)2), which exhibits typical self-trapped exciton (STE) emission with an efficient yellow emission at 630 nm and high photoluminescence quantum yield (PLQY) of 67.2%. The dual STE emission is attributed to the singlet and triplet STEs in inorganic [SbCl5]2-, respectively. Further, an ab initio molecular dynamics simulation was performed to estimate the stability of crystal structure at room temperature. The calculated excited-state structure indicates that the deformation parameter (Δd) of the excited-state structure is larger than that of the ground state, illustrating the origin of a large Stokes shift. These results indicate that these new 0D lead-free organic-inorganic hybrid metal halides are promising luminescent materials for optoelectronic applications.
Collapse
Affiliation(s)
- Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xinxin Han
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Lishuang Wang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Dutta T, Sheikh T, Nag A. Temperature-Dependent Photoluminescence of Hexafluorobenzene-Intercalated Phenethylammonium Tin Iodide 2D Perovskite. Chem Asian J 2021; 16:2745-2751. [PMID: 34342155 DOI: 10.1002/asia.202100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Indexed: 11/07/2022]
Abstract
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2 SnI4 ] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2 SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.
Collapse
Affiliation(s)
- Taniya Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| | - Tariq Sheikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER, Pune, 411008, India
| |
Collapse
|
35
|
Peng H, Wang X, Tian Y, Dong T, Xiao Y, Huang T, Guo Y, Wang J, Zou B. Water-Stable Zero-Dimensional (C 4H 9) 4NCuCl 2 Single Crystal with Highly Efficient Broadband Green Emission. J Phys Chem Lett 2021; 12:6639-6647. [PMID: 34254802 DOI: 10.1021/acs.jpclett.1c01794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report (C4H9)4NCuCl2 single crystals with a luminous intensity that remains largely the same after soaking in water for 24 h. (CH9)4NCuCl2 has a new type zero-dimensional framework, in which the isolated [CuCl2]- anions are wrapped by organic (C4H9)4N+ cations. As expected, (C4H9)4NCuCl2 shows a broad emission band at 508 nm with a photoluminescence quantum yield of approximately 82% at room temperature, stemming from self-trapped exciton (STE) emission. Temperature-dependent photoluminescence measurement reveals that there is an energy barrier ΔE (24.0 meV) between the intrinsic state and STE state, which leads to the increase in emission intensity with an increase in temperature (98-278 K), while the emission intensity begins to decrease when the temperature is higher than 278 K due to the effects of both thermal quenching and carrier scattering. Our findings provide a new idea for the design of lead-free anti-water stability metal halide materials.
Collapse
Affiliation(s)
- Hui Peng
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Xinxin Wang
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Tian
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonghao Xiao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yongchang Guo
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
36
|
Yang C, Liu X, Teng C, Wu Q, Liang F. Syntheses, structure and properties of a new series of organic-inorganic Hg-based halides: adjusting halogens resulted in huge performance mutations. Dalton Trans 2021; 50:7563-7570. [PMID: 33978025 DOI: 10.1039/d1dt01085a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three new organic-inorganic hybrid perovskite (OIHP) halides, [N(CH3)4]HgCl0.63Br2.37 (I), [N(CH3)4]HgBrI2 (II) and [N(CH3)4]HgCl0.45I2.55 (III), were synthesized by a hydrothermal reaction. They feature different crystal structures, in which both II and III are isomorphic and contain a one-dimensional chain with organic cation [N(CH3)4]+ interspersed in the space, whereas II has a similar one-dimensional chain but significantly different spatial arrangement due to the enhanced hydrogen bond interaction. The experimental results show that the divergent second-order nonlinear optical (NLO) effect from Br(Cl) to I and the arrangement of anion groups change dramatically from the presence of hydrogen bonds to the absence of hydrogen bonds, leading to a sharply increased NLO response of II and III (18 and 25 times that of I) compared with that of I. Moreover, the phase matching ability disappeared and the band gap decreased significantly. Meanwhile, a high temperature phase transition was observed in II and III, which is rare in common OIHPs. All these results indicate that the regulation of halogen bonds plays a crucial role in the structural and property mutations of OIHP halides.
Collapse
Affiliation(s)
- Can Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | - Xian Liu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | - Chunlin Teng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | - Fei Liang
- Institute of Materials Science, TU Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
37
|
Yang C, Liu X, Teng C, Wu Q, Liang F. Acentric Organic-Inorganic Hybrid Halide [N(CH 3) 4] 2HgBr 2I 2 Featuring an Isolated [HgBr 2I 2] 2- Tetrahedron and Second-Order Nonlinearity. Inorg Chem 2021; 60:6829-6835. [PMID: 33887916 DOI: 10.1021/acs.inorgchem.1c00756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new hybrid compound [N(CH3)4]2HgBr2I2, obtained by a hydrothermal reaction, crystallized in the noncentrosymmetric space group P212121. Its structure contains an isolated asymmetric [HgBr2I2]2- tetrahedron with net polarization, connected by hydrogen bonds to form pseudo-one-dimensional chain structures. Moreover, its optical band gap, nonlinear optical (NLO) property, fluorescence property, and thermal property were characterized in detail. A rare high-temperature phase transition was observed in the compound. In addition, theoretical calculations were performed to elaborate the relation between electronic state, band structure, and their nonlinear optical response. These results indicate that [N(CH3)4]2HgBr2I2 is a new potential candidate for future photoelectronic applications in fluorescence and nonlinear optics.
Collapse
Affiliation(s)
- Can Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Xian Liu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Chunlin Teng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
38
|
Yu T, Mao X, Xu X, Wang Z, Zhang R. Ultrafast dynamics of a highly-emissive zero-dimensional organic tin bromide perovskite. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Peng H, Wang X, Tian Y, Zou B, Yang F, Huang T, Peng C, Yao S, Yu Z, Yao Q, Rao G, Wang J. Highly Efficient Cool-White Photoluminescence of (Gua) 3Cu 2I 5 Single Crystals: Formation and Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13443-13451. [PMID: 33715359 DOI: 10.1021/acsami.1c02503] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zero-dimensional lead-free organic-inorganic hybrid metal halides have drawn attention as a result of their local metal ion confinement structure and photoelectric properties. Herein, a lead-free compound of (Gua)3Cu2I5 (Gua = guanidine) with a different metal ion confinement has been discovered, which possesses a unique [Cu2I5]3- face-sharing tetrahedral dimer structure. First-principles calculation demonstrates the inherent nature of a direct band gap for (Gua)3Cu2I5, and its band gap of ∼2.98 eV was determined by experiments. Worthy of note is that (Gua)3Cu2I5 exhibits a highly efficient cool-white emission peaking at 481 nm, a full-width at half-maximum of 125 nm, a large Stokes shift, and a photoluminescence quantum efficiency of 96%, originating from self-trapped exciton emission. More importantly, (Gua)3Cu2I5 single crystals have a reversible thermoinduced luminescence characteristic due to a structural transition scaled by the electron-phonon coupling coefficients, which can be converted back and forth between cool-white and yellow color emission by heating or cooling treatment within a short time. In brief, as-synthesized (Gua)3Cu2I5 shows great potential for application both in single-component white solid-state lighting and sensitive temperature scaling.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxin Wang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Tian
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chengyu Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qingrong Yao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guanghui Rao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Morad V, Yakunin S, Benin BM, Shynkarenko Y, Grotevent MJ, Shorubalko I, Boehme SC, Kovalenko MV. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007355. [PMID: 33480450 PMCID: PMC11481058 DOI: 10.1002/adma.202007355] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Bogdan M. Benin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Matthias J. Grotevent
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Simon C. Boehme
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| |
Collapse
|
41
|
Su B, Song G, Molokeev MS, Golovnev NN, Lesnikov MK, Lin Z, Xia Z. Role of Metal-Chloride Anions in Photoluminescence Regulations for Hybrid Metal Halides. J Phys Chem Lett 2021; 12:1918-1925. [PMID: 33591758 DOI: 10.1021/acs.jpclett.1c00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid metal halides with emissive organic cations are of great interest due to their structural diversity and interesting photophysical properties. Here, we assemble emissive organic cations (EnrofloH22+) with different metal-chloride anions (Pb2Cl62- to Bi2Cl104- to SnCl62-) to form the new single crystal phases, and thus the photoluminescence properties of the metal halides, including Stokes shift, full width at half-maximum (FWHM), and photoluminescence quantum yield (PLQY) have been studied accordingly. (EnrofloH2)SnCl6·H2O, as an example, possesses narrow FWHM and high PLQY, which are caused by the strong π-π stacking and inter- and intramolecular hydrogen bonds interactions. Compared with EnrofloH22+ cation in solution, the interactions generate a restraining effect and increase the rigid degree of EnrofloH22+ cation in the bulk single crystals. Our work clarifies the photophysical properties of the EnrofloH22+ organic cations by constructing the inter- and intramolecular interactions and boosts the further study of organic-inorganic hybrid metal halides materials with different luminescence mechanisms.
Collapse
Affiliation(s)
- Binbin Su
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Gaomin Song
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Maxim S Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Krasnoyarsk 660041, Russia
- Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russia
| | | | | | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
42
|
Sun XY, Yue M, Jiang YX, Zhao CH, Liao YY, Lei XW, Yue CY. Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides. Inorg Chem 2021; 60:1491-1498. [PMID: 33464052 DOI: 10.1021/acs.inorgchem.0c02785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, low-dimensional lead halides have emerged as some of most attractive photoelectric materials due to their intrinsic broadband emissions with a potential application in white-light emitting diodes. To achieve the desired performance, tremendous research has emphasized the modulation of inorganic components as optical centers; however, less work has paid attention to the direct contribution of the organic components. Herein, we successfully assembled two new hybrid lead halides of [H2BPP]Pb2X6 (X = Br, 1, and Cl, 2) containing one-dimensional double [Pb2X6]2- chains using optically active 1,3-bis(4-pyridyl)-propane (BPP) as an organic cation. Under UV-light excitation, compounds 1 and 2 exhibit broadband yellowish-green emissions, which were verified by promising photoluminescence quantum efficiencies (PLQEs) of 8.10% and 4.84%, respectively. The broadband light emissions are derived from the combination of dual higher-energy blue and lower-energy yellow light spectra, which can be attributed to the individual contributions of the organic and inorganic components, respectively, according to the time-resolved and temperature-dependent emission spectra as well as theoretical calculations. This work proves the great contribution of organic components to the photophysical properties and provides a new design strategy to realize broadband light emission by rationally combining the dual-emitting properties of different assembly blocks.
Collapse
Affiliation(s)
- Xing-Yu Sun
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Meng Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yong-Xin Jiang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Hao Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yuan-Yuan Liao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
43
|
Brandt N, Reiss GJ. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C 8H 14Br 2N 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
C8H14Br2N2, monoclinic, I2/a (no. 15), a = 9.0331(9) Å, b = 13.4475(14) Å, c = 27.586(3) Å, β = 94.879(9)°, Z = 12, V = 3338.8(6) Å3, R
gt
(F) = 0.0582, wR
ref = 0.0885, T = 290 K.
Collapse
Affiliation(s)
- Niklas Brandt
- Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| | - Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , D-40225 Düsseldorf , Germany
| |
Collapse
|
44
|
Ma Q, Guo N, Xin Y, Shao B. Preparation of zero-thermal-quenching tunable emission bismuth-containing phosphors through the topochemical design of ligand configuration. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00705j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a high performance bismuth-containing phosphor with zero-thermal-quenching, which can be used for white light illumination and non-contact temperature sensing.
Collapse
Affiliation(s)
- Qincan Ma
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Ning Guo
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yanmei Xin
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Baiqi Shao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
45
|
Abstract
This review provides in-depth insight into the structure–luminescence–application relationship of 0D all-inorganic/organic–inorganic hybrid metal halide luminescent materials.
Collapse
Affiliation(s)
- Mingze Li
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| |
Collapse
|
46
|
Liu Y, Li YK, Ying TT, Tan YH, Tang YZ, Han DC, Du PK, Zhang H. Multisequential reversible phase transition materials with semiconducting and fluorescence properties: (C 8H 18BrN) 2SnBr 6. NEW J CHEM 2021. [DOI: 10.1039/d1nj04448f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel organic–inorganic hybrid metal halide has synthesized, namely (C8H18BrN)2SnBr6 (1), which have excellent switchable dielectric properties, narrow band gap and broadband yellow fluorescence characteristics.
Collapse
Affiliation(s)
- Yao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Peng-kang Du
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
47
|
Guo S, Zhang W, Zhang M, Yang Z, Pan S. Sn 3B 8O 15: A Ternary Tin(II) Borate with Flexible [B 8O 18] 12- Fundamental Building Block Formed by [B 7O 16] 11- and [BO 3] 3- Groups. Inorg Chem 2020; 60:883-891. [PMID: 33372798 DOI: 10.1021/acs.inorgchem.0c03010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to the tendency to form the glass state in growing crystals in the ternary tin(II) borate system, hitherto, very few single crystals in ternary tin(II) borate were reported. In this paper, a single crystal of Sn3B8O15 was obtained via a high temperature solution method in a closed system. The structure features a flexible fundamental building block [B8O18]12- constructed by one [BO3]3- unit and one [B7O16]11- group that contains three hexatomic rings, which further connect to compose a two-dimensional 2∞[B8O15] layer structure. The connection mode and flexibility of the three hexatomic B-O rings were analyzed, verifying the structural diversity of the B-O configuration. Moreover, the synthesis, crystal structure, and various characterizations were comprehensively presented. Also, theoretical calculations were employed to discuss structure-property relationships, and we use the real-space atom-cutting techniques to explain the origin of the birefringence of Sn3B8O15.
Collapse
Affiliation(s)
- Siru Guo
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|