1
|
Rezki M, Hossain MM, Savage TK, Tokunou Y, Tsujimura S. Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes. MATERIALS HORIZONS 2025; 12:760-769. [PMID: 39792379 DOI: 10.1039/d4mh01538j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation. Here, we design a novel redox-active cobalt-based metal-organic framework (raMOF) obtained via the partial ligand substitution of 2-methylimidazole (MeIm) with a 1,2-naphthoquinone-4-sulfonate (NQSO) redox probe, as a promising platform for high-performance enzyme electrodes. This nanostructured raMOF, combined with multi-walled carbon nanotubes (CNTs), provided a high current density of up to 2.06 mA cm-2 during enzymatic reactions and maintained remarkable operational stability, retaining 100% of its current over 54 hours. This stability far exceeded that of adsorbed NQSO on CNTs, which experienced a complete loss of the initial current, highlighting the significant advantage of the raMOF-based platform for high-performance enzyme electrodes.
Collapse
Affiliation(s)
- Muhammad Rezki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan
| | - Md Motaher Hossain
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan
| | - Thomas Kouyou Savage
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-8577, Japan
| | - Yoshihide Tokunou
- Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-8577, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1, Namiki, Ibaraki 305-0044, Japan
| | - Seiya Tsujimura
- Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
| |
Collapse
|
2
|
Wang RN, Tan YC, Liu W, Wang ZY, Zhang JD, Zhu QY. A metal-organic framework with mixed electron donor and electron acceptor ligands for efficient lithium-ion storage. Chem Commun (Camb) 2025; 61:2289-2292. [PMID: 39803875 DOI: 10.1039/d4cc05567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g-1 at 1 A g-1 over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.
Collapse
Affiliation(s)
- Ruo-Nan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yu-Chuan Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zi-Yi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jun-Die Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
3
|
Zhang XY, Fan JA, Chen ZH, Sun C, Zheng ST. The mechanism governing the formation of intermolecular charge transfer bands: a series of polyoxomolybdates as a case study. Dalton Trans 2024; 53:6162-6167. [PMID: 38488144 DOI: 10.1039/d4dt00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A series of proof-of-concept models of polyoxomolybdates with different protonated disubstituted aniline counterions and the same β-Mo8O26 polyanion were synthesized to study the mechanism governing the formation of the intermolecular charge transfer (inter-CT) band.
Collapse
Affiliation(s)
- Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jin-Ai Fan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Zhe-Hong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
4
|
Zhang ZR, Ren ZH, Luo CY, Ma LJ, Dai J, Zhu QY. Redox-Active Two-Dimensional Tetrathiafulvalene-Copper Metal-Organic Framework with Boosted Electrochemical Performances for Supercapatteries. Inorg Chem 2023; 62:4672-4679. [PMID: 36883521 DOI: 10.1021/acs.inorgchem.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted noticeable attention as promising candidates for electrochemical energy storage. However, the lack of electrical conductivity and the weak stability of most MOFs result in poor electrochemical performances. Here, a tetrathiafulvalene (TTF)-based complex, formulated as [(CuCN)2(TTF(py)4)] (1) (TTF-(py)4 = tetra(4-pyridyl)-TTF), is assembled by in situ generation of coordinated CN- from a nontoxic source. Single-crystal X-ray diffraction analysis reveals that compound 1 possesses a two-dimensional layered planar structure, which is further stacked in parallel to form a three-dimensional supramolecular framework. The planar coordination environment of 1 is the first example of a TTF-based MOF. Attributed to the unique structure and redox TTF ligand, the electrical conductivity of 1 is significantly increased by 5 orders of magnitude upon iodine treatment. The iodine-treated 1 (1-ox) electrode displays typical battery-type behavior through electrochemical characterizations. The supercapattery based on the 1-ox positrode and AC negatrode presents a high specific capacity of 266.5 C g-1 at a specific current of 1 A g-1 with a remarkable specific energy of 62.9 Wh kg-1 at a specific power of 1.1 kW kg-1. The excellent electrochemical performance of 1-ox is one of the best among those reported supercapatteries, demonstrating a new strategy for developing MOF-based electrode materials.
Collapse
Affiliation(s)
- Zhi-Ruo Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhou-Hong Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen-Yue Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Jun Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Gao C, Sun Z, Zhu N, Han H, Li Z, Gu C, Yang Y, Xin X, Qiu Q, Yang W, Wang G, Jin Q. Synthesis, characterization and discussion of two copper(I) complexes with different luminescent properties under the influence of multiple weak forces. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2145959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chengjie Gao
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhenzhou Sun
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing, China
| | - Xiulan Xin
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Qiming Qiu
- School of Science, China University of Geosciences, Beijing, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
6
|
Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the m-Tetrathiafulvalene-Tetrabenzoate. Molecules 2022; 27:molecules27134052. [PMID: 35807293 PMCID: PMC9268712 DOI: 10.3390/molecules27134052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.
Collapse
|
7
|
Romanenko GV, Fursova EY, Letyagin GA, Tolstikov SE, Ovcharenko VI. FRAMEWORKS BASED ON HEXANUCLEAR Mn PIVALATE AND 1,3-DI(4′-PYRIDYL)TRIAZENE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yan T, Li YY, Gu QY, Li J, Su J, Wang HY, Zuo JL. A Tetrathiafulvalene/Naphthalene Diimide-Containing Metal-Organic Framework with fsc Topology for Highly Efficient Near-Infrared Photothermal Conversion. Inorg Chem 2022; 61:3078-3085. [PMID: 35142506 DOI: 10.1021/acs.inorgchem.1c03246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) provide broad prospects for the development of new photothermal conversion materials, while their design and synthesis remain challenging. A new Zn-MOF (1) containing both tetrathiafulvalene (TTF) as an electron donor and naphthalene diimide (NDI) as an electron acceptor was constructed by using a space limiting effect. The material exhibited wide absorption peaks in the near-infrared region, indicating that there was strong charge transfer interaction between the TTF and NDI units and providing the possibility of photothermal conversion. 1 shows efficient near-infrared photothermal conversion performance. Under 808 nm laser (0.4 W cm-2) illumination, the temperature of 1 increased rapidly from room temperature to 250 °C, with good thermal stability and cycle durability. This work provides an efficient strategy for promising materials in photothermal therapy.
Collapse
Affiliation(s)
- Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu-Yang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Qin-Yi Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.,School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Wang J, Hu H, Lu S, Hu J, Zhu H, Duan F, Du M. Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. NANOSCALE 2022; 14:277-288. [PMID: 34935018 DOI: 10.1039/d1nr06197f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal and covalent organic frameworks (MOFs/COFs) are emerging promising candidates in the field of catalysts due to their porous nature, chemically well-defined active sites and structural diversity. However, they are typically provided with poor electrical conductivity, which is insufficient for them to work as satisfying electrocatalysts. Designing and fabricating MOFs/COFs with high conductivity presents a new avenue towards special electrochemical reactions. This minireview firstly highlighted the origin and design principles of conductive MOFs/COFs for electrocatalysis on the basis of typical charge transfer mechanisms, that is "through space", "extended conjugation" and "through bond". An overview of conductive MOFs/COFs used in the electrocatalytic carbon dioxide reduction reaction (CO2RR), water splitting and the oxygen reduction reaction (ORR) was then made to track the very recent progress. In the final remarks, the present challenges and perspectives for the use of conductive MOFs/COFs as electrocatalysts including their structural optimization, feasible applications and structure-activity correlation are proposed.
Collapse
Affiliation(s)
- Jinyan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hongyin Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Miyasaka H. Charge Manipulation in Metal–Organic Frameworks: Toward Designer Functional Molecular Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
11
|
Xie FY, Yang Q, Wang JS, Yu HY, Li Y, Ruan WJ. Benzotrithiophene-based MOFs: interchromophoric interactions affected Ln(III) crystallization selectivity and optoelectronic properties. Dalton Trans 2021; 50:17228-17234. [PMID: 34783810 DOI: 10.1039/d1dt02515e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal-organic frameworks (MOFs) provide an ideal platform for the assembly of chromophores and thus show wide potential applications in optoelectronic devices. The spatial arrangement and interaction of the incorporated chromophores play a key role in the generation of coherent optical and electronic properties. In this work, two series of benzo-(1,2;3,4;5,6)-tristhiophene (BTT) based Ln-MOFs (Ln-1s and Ln-2s) were synthesized. These two series of MOFs present different assembly states of BTT chromophores, that is, BTT-containing ligands exist as separated monomers in Ln-1s but gather as dimers in Ln-2s. From the comparison between these two series of MOFs and theoretical calculations, we show for the first time that this chromophore assembly state difference could affect the crystallization selectivity of MOFs towards different Ln3+ ions. In addition, the interaction between BTT chromophores in the dimer also leads to the red-shifted photoluminescence and enhanced photocurrent of Ln-2s relative to those of Ln-1s. The results of this work demonstrate the multiple functions of interchromophoric interactions in the structures and optoelectronic properties of MOFs.
Collapse
Affiliation(s)
- Feng-Yang Xie
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China.
| | - Qi Yang
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China.
| | - Jia-Si Wang
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China.
| | - Hong-Yi Yu
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China.
| | - Yue Li
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China. .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wen-Juan Ruan
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China. .,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Weng YG, Ren ZH, Zhang ZR, Shao J, Zhu QY, Dai J. Tetrathiafulvalene-Cobalt Metal-Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability. Inorg Chem 2021; 60:17074-17082. [PMID: 34702033 DOI: 10.1021/acs.inorgchem.1c02304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although pristine metal-organic framework (MOF) anodes for lithium-ion batteries (LIBs) show moderate activities and relatively stable cycling, the poor rate capability of the MOF anodes limited their applications in the development of a new generation of energy storage. Herein, the electric active CoII ion is selected to coordinate with redox-active S-rich tetrathiafulvalene (TTF) derivatives to create two TTF-Co-MOFs, formulated as [Co2(py-TTF-py)2(BDC)2]·2DMF·H2O (TTF-Co-MOF 1) and [Co2(py-TTF-py)2(BPDC)2]·3DMF·3H2O (TTF-Co-MOF 2), where py-TTF-py = 2,6-bis(4'-pyridyl)tetrathiafulvalene, H2BDC = terephthalic acid, H2BPDC = biphenyl-4,4'-dicarboxylic acid, and DMF = N,N-dimethylformamide. Crystallographic characterization indicated that the two MOFs possess similar 2-fold-interpenetrating 3D frameworks but with two different pore sizes. The pore-size-dependent performances of the TTF-Co-MOFs were explored to optimize the MOFs as the anode materials for LIBs. TTF-Co-MOF 1 presents a high reversible specific capacity of 1186.6 mAh g-1 at 200 mA g-1 after 287 cycles. The rate capability is greatly enhanced by the introduction of CoII into TTF-based MOFs with specific capacities of 1028.6 mAh g-1 at 5 A g-1 and 966.5 mAh g-1 at 10 A g-1. On the basis of the series analysis of theoretical calculations, electrochemical impedance spectroscopy, and crystal structures, it is found that the CoII metal centers play a bridging role in charge transport within the MOF framework, which is beneficial for the transportation of Li ions. The competitive performances of TTF-Co-MOF 1 are attributed to the synergistic effect of the CoII metal centers and S-rich TTF ligand as well as suitable porosity. The study shed some light for the fabrication of advanced energy storage devices through the rational design of MOF-based anode materials.
Collapse
Affiliation(s)
- Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhou-Hong Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhi-Ruo Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Synthesis, structure and fluorescence property of a new Zn-MOF based on a tetraphenylethane (TPE) ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhou ZY, Ge CY, Jiang M, Hou JL, Zhu QY, Dai J. Copper-bipyridine grid frameworks incorporating redox-active tetrathiafulvalene: structures and supercapacitance. Dalton Trans 2021; 50:11091-11098. [PMID: 34612245 DOI: 10.1039/d1dt01805a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox active tetrathiafulvalene (TTF) and its derivatives when used as electrode additives have exhibited improved energy efficiency and sustainability in batteries. However, the structure-property relationship has not been investigated in detail until very recently. In this work, three redox-active TTF compounds were synthesized, and formulated as [Cu(HL)2(bpa)2]n (1), [Cu(bpe)2(H2O)2]n·2n(HL)·nMeOH·nH2O (2), and [Cu(bpp)2(H2O)2]n·2n(HL) (3) (L = dimethylthio-tetrathiafulvalene-bicarboxylate) for this work. The effects of conjugated state and spacer length of the linkers on structural assembly and band gap as well as the interactions of TTF-TTF/TTF-bpy are discussed. Compound 1 is a bpa and HL co-coordinated 1D Cu(ii) polymer. Compounds 2 and 3 are 2D Cu(ii)-bipyridine (4,4) MOFs incorporating HL (1-) as free anion columns. The photocurrent density of 2 is larger than those of 1 and 3 due to a strong charge transfer from TTF to bpe in compound 2. The supercapacitance performances of these compounds were evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. The results revealed that the 2D MOF structures of 2 and 3 are beneficial for good specific capacitance values (Csp). This work revealed the structure-property relationships of TTF derivatives for use as electrode active materials in energy transfer and storage.
Collapse
Affiliation(s)
- Zi-Yao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
15
|
Koptseva TS, Bazyakina NL, Moskalev MV, Baranov EV, Fedushkin IL. 1D Coordination Polymer Derived from Redox‐Active Digallane. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatyana S. Koptseva
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences Moskva 603950 Nizhny Novgorod Tropinina Str. 49 Russian Federation
| | - Natalia L. Bazyakina
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences Moskva 603950 Nizhny Novgorod Tropinina Str. 49 Russian Federation
| | - Mikhail V. Moskalev
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences Moskva 603950 Nizhny Novgorod Tropinina Str. 49 Russian Federation
| | - Evgeny V. Baranov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences Moskva 603950 Nizhny Novgorod Tropinina Str. 49 Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences Moskva 603950 Nizhny Novgorod Tropinina Str. 49 Russian Federation
| |
Collapse
|
16
|
Homochiral coordination architectures based on a series of pyridyl-alanine derivatives with varied configurations: Structural diversity, photoluminescence and magnetic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Su J, Xu N, Murase R, Yang Z, D'Alessandro DM, Zuo J, Zhu J. Persistent Radical Tetrathiafulvalene‐Based 2D Metal‐Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021; 60:4789-4795. [DOI: 10.1002/anie.202013811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 P. R. China
| | - Ning Xu
- National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 P. R. China
| | - Ryuichi Murase
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Zhi‐Mei Yang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 P. R. China
| | | | - Jing‐Lin Zuo
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
18
|
Persistent Radical Tetrathiafulvalene‐Based 2D Metal‐Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Xu W, Sun Y, Meng X, Zhang W, Hou H. Tuning the photoelectric response of pyrene-based coordination polymers by optimizing charge transfer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00004g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three π–π stacked CPs were designed and synthesized for application of photoelectric response. The effect of charge transfer on the photoelectric properties is explored by adjusting the composition and π-stacking fashion of the CPs.
Collapse
Affiliation(s)
- Wenjuan Xu
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yupei Sun
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xiangru Meng
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Wenjing Zhang
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Hongwei Hou
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|