1
|
Regueiro A, Martí-Carrascosa M, Torres-Cavanillas R, Coronado E. Unlocking room-temperature bistable spin transition at the nanoscale: the synthesis of core@shell [Fe(NH 2trz) 3(NO 3) 2]@SiO 2 nanoparticles. Dalton Trans 2024; 53:8764-8771. [PMID: 38712733 DOI: 10.1039/d4dt00911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this work, we address the synthesis of stable spin-crossover nanoparticles capable of undergoing a hysteretic spin transition at room temperature. For this purpose, we use the reverse-micelle protocol to prepare naked [Fe(NH2trz)3](NO3)2 and core@shell [Fe(NH2trz)3](NO3)2@SiO2 nanoparticles. Through meticulous adjustment of synthetic parameters, we achieved nanoparticle sizes ranging from approximately 40 nm to 60 nm. Our findings highlight that [Fe(NH2trz)3](NO3)2 presents a modest thermal hysteresis of 7 K, which decreases by downsizing. Conversely, silica-coated nanoparticles with sizes of ca. 60 and 40 nm demonstrate a remarkable hysteretic response of approximately 30 K, switching their spin state around room temperature. Moreover, the presence of a SiO2 shell substantially enhances the nanoparticles' stability against oxidation. In this context, the larger 60 nm [Fe(NH2trz)3](NO3)2@SiO2 hybrid remains stable in water for up to two hours, enabling the observation of an unreported water-induced spin transition after 30 min. Therefore, this work also introduces an intriguing avenue for inducing spin transitions through solvent exchange, underscoring the versatility and potential of these nanoparticles.
Collapse
Affiliation(s)
- A Regueiro
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - M Martí-Carrascosa
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
- Universitat Politecnica de Valencia, Nanophotonics Technology Center, Valencia, Spain
| | - R Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
- Department of Materials, Oxford University, 21 Banbury Rd, Oxford OX2 6NN, UK.
| | - E Coronado
- Department of Materials, Oxford University, 21 Banbury Rd, Oxford OX2 6NN, UK.
| |
Collapse
|
2
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Torres-Cavanillas R, Gavara-Edo M, Coronado E. Bistable Spin-Crossover Nanoparticles for Molecular Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307718. [PMID: 37725707 DOI: 10.1002/adma.202307718] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The field of spin-crossover complexes is rapidly evolving from the study of the spin transition phenomenon to its exploitation in molecular electronics. Such spin transition is gradual in a single-molecule, while in bulk it can be abrupt, showing sometimes thermal hysteresis and thus a memory effect. A convenient way to keep this bistability while reducing the size of the spin-crossover material is to process it as nanoparticles (NPs). Here, the most recent advances in the chemical design of these NPs and their integration into electronic devices, paying particular attention to optimizing the switching ratio are reviewed. Then, integrating spin-crossover NPs over 2D materials is focused to improve the endurance, performance, and detection of the spin state in these hybrid devices.
Collapse
Affiliation(s)
- Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
- Department of Materials, Oxford University, Oxford, OX2 6NN, UK
| | - Miguel Gavara-Edo
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| |
Collapse
|
4
|
Therssen H, Catala L, Mazérat S, Mallah T, Vuillaume D, Mélin T, Lenfant S. Electronic properties of single Prussian Blue Analog nanocrystals determined by conductive-AFM. NANOSCALE 2023; 15:19128-19138. [PMID: 37964732 DOI: 10.1039/d3nr04542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report a study of the electron transport (ET) properties at the nanoscale (conductive-AFM denoted as C-AFM hereafter) of individual Prussian Blue Analog (PBA) cubic nanocrystals (NCs) of CsCoIIIFeII, with a size between 15 and 50 nm deposited on HOPG. We demonstrate that these PBA NCs feature an almost size-independent electron injection barrier of 0.41 ± 0.02 eV and 0.27 ± 0.03 eV at the CsCoIIIFeII/HOPG and CsCoIIIFeII/C-AFM tip, respectively, and an intrinsic electron conductivity evolving from a large dispersion between ∼5 × 10-4 and 2 × 10-2 S cm-1 without a clear correlation with the nanocrystal size. The conductivity values measured on individual nanocrystals are up to fifty times higher than those reported on PBA films.
Collapse
Affiliation(s)
- Hugo Therssen
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| | - Laure Catala
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400 Orsay Cedex, France
| | - Sandra Mazérat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400 Orsay Cedex, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400 Orsay Cedex, France
| | - Dominique Vuillaume
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| | - Thierry Mélin
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| | - Stéphane Lenfant
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| |
Collapse
|
5
|
Steenbock T, Rybakowski LLM, Benner D, Herrmann C, Bester G. Exchange Spin Coupling in Optically Excited States. J Chem Theory Comput 2022; 18:4708-4718. [PMID: 35797603 DOI: 10.1021/acs.jctc.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In optically excited states in molecules and materials, coupling between local electron spins plays an important role for their photoemission properties and is interesting for potential applications in quantum information processing. Recently, it was experimentally demonstrated that the photogenerated local spins in donor-acceptor metal complexes can interact with the spin of an attached radical, resulting in a spin-coupling-dependent mixing of excited doublet states, which controls the local spin density distributions on donor, acceptor, and radical subunits in optically excited states. In this work, we propose an energy-difference scheme to evaluate spin coupling in optically excited states, using unrestricted and spin-flip simplified time-dependent density functional theory. We apply it to three platinum complexes which have been studied experimentally to validate our methodology. We find that all computed coupling constants are in excellent agreement with the experimental data. In addition, we show that the spin coupling between donor and acceptor in the optically excited state can be fine-tuned by replacing platinum with palladium and zinc in the structure. Besides the two previously discussed excited doublet states (one bright and one dark), our calculations reveal a third, bright excited doublet state which was not considered previously. This third state possesses the inverse spin polarization on donor and acceptor with respect to the previously studied bright doublet state and is by an order of magnitude brighter, which might be interesting for optically controlling local spin polarizations with potential applications in spin-only information transfer and manipulation of connected qubits.
Collapse
Affiliation(s)
- Torben Steenbock
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Lawrence L M Rybakowski
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Dominik Benner
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Gabriel Bester
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,Department of Physics, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
6
|
Glatz J, Jiménez JR, Godeffroy L, von Bardeleben HJ, Fillaud L, Maisonhaute E, Li Y, Chamoreau LM, Lescouëzec R. Enlightening the Alkali Ion Role in the Photomagnetic Effect of FeCo Prussian Blue Analogues. J Am Chem Soc 2022; 144:10888-10901. [PMID: 35675503 DOI: 10.1021/jacs.2c03421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
FeCo Prussian blue analogues of general formula AxCoy[Fe(CN)6]z are responsive, non-stoichiometric materials whose magnetic and optical properties can be reversibly switched by light irradiation. However, elucidating the critical influence of the inserted alkali ion, A+, on the material's properties remains complicated due to their complex local structure. Here, by investigating soluble A ⊂ [Fe4-Co4] cyanido cubes (A = K, Rb, and Cs), both accurate structural and electronic information could be obtained. First, X-ray diffraction analyses reveal distinct interactions between the inserted A+ ions and the {Fe4-Co4} box, which impacts the structural distortion in the cubic framework. These distortions vanish, and a displacement of the small K+ ion from a corner toward the center is observed, as a cobalt corner CoIIHS is oxidized to CoIIILS. Second, cyclic voltammetry experiments performed at variable temperatures show distinct splitting of the CoIIHS ⇔ CoIIILS peak potentials for the different A+ cations, which can be qualitatively linked to different thermodynamic (standard potentials) and kinetic (energy barriers) parameters associated with the structural reorganization accompanying this redox-coupled spin state change. Moreover, for the first time, photomagnetism was investigated in frozen solution to avoid effects of intermolecular interactions. The results show that the metastable state is stabilized following the trend K > Rb > Cs. The outcome of these studies suggests that the interaction of the inserted alkali ions with the cyanide cage and the structural changes accompanying the electron transfer impact the stability of the photoinduced state and the relaxation temperature: the smaller the cation, the higher the structural reorganization and the associated energy barrier, and the more stable the metastable state.
Collapse
Affiliation(s)
- Jana Glatz
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Juan-Ramón Jiménez
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Louis Godeffroy
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Hans Jurgen von Bardeleben
- Institut des Nanosciences de Paris, CNRS UMR 7588, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Laure Fillaud
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Emmanuel Maisonhaute
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Lise-Marie Chamoreau
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| |
Collapse
|
7
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
zerdane S, Herve M, Mazerat S, CATALA L, Mori RA, Glownia JM, Song S, Levantino M, Mallah T, Cammarata M, Collet E. Out-of-equilibrium dynamics driven by photoinduced charge transfer in CsCoFe Prussian Blue Analogue nanocrystals. Faraday Discuss 2022; 237:224-236. [DOI: 10.1039/d2fd00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we study the out-of-equilibrium dynamics associated with photoinduced charge-transfer (CT) in cyanide-bridged Co-Fe Prussian blue analogue nanocrystals. In these coordination networks, the structural trapping of the photoinduced...
Collapse
|
9
|
Zhang L, Arrio MA, Mazerat S, Catala L, Li W, Otero E, Ohresser P, Lisnard L, Cartier Dit Moulin C, Mallah T, Sainctavit P. Magnetic Hysteresis in a Monolayer of Oriented 6 nm CsNiCr Prussian Blue Analogue Nanocrystals. Inorg Chem 2021; 60:16388-16396. [PMID: 34624189 DOI: 10.1021/acs.inorgchem.1c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prussian blue analogue nanocrystals of the CsINiII[CrIII(CN)6] cubic network with 6 nm size were assembled as a single monolayer on highly organized pyrolytic graphite (HOPG). X-ray magnetic circular dichroism (XMCD) studies, at the Ni and Cr L2,3 edges, reveal the presence of an easy plane of magnetization evidenced by an opening of the magnetic hysteresis loop (coercive field of ≈200 Oe) when the magnetic field, B, is at 60° relative to the normal to the substrate. The angular dependence of the X-ray natural linear dichroism (XNLD) reveals both an orientation of the nanocrystals on the substrate and an anisotropy of the electronic cloud of the NiII and CrIII coordination sphere species belonging to the nanocrystals' surface. Ligand field multiplet (LFM) calculations that reproduce the experimental data are consistent with an elongated tetragonal distortion of surface NiII coordination sphere responsible for the magnetic behavior of monolayer.
Collapse
Affiliation(s)
- Luqiong Zhang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, MNHN, UMR 7590, Sorbonne Université, CNRS, 75252 Paris Cedex 05, France
| | - Marie-Anne Arrio
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, MNHN, UMR 7590, Sorbonne Université, CNRS, 75252 Paris Cedex 05, France
| | - Sandra Mazerat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France
| | - Laure Catala
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France
| | - Weibin Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, MNHN, UMR 7590, Sorbonne Université, CNRS, 75252 Paris Cedex 05, France.,L'Orme des Merisiers, Synchrotron SOLEIL, 91192 Saint-Aubin, France
| | - Edwige Otero
- L'Orme des Merisiers, Synchrotron SOLEIL, 91192 Saint-Aubin, France
| | | | - Laurent Lisnard
- Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, CNRS, F-75005 Paris, France
| | | | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France
| | - Philippe Sainctavit
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, MNHN, UMR 7590, Sorbonne Université, CNRS, 75252 Paris Cedex 05, France.,L'Orme des Merisiers, Synchrotron SOLEIL, 91192 Saint-Aubin, France
| |
Collapse
|
10
|
Azzolina G, Tokoro H, Imoto K, Yoshikiyo M, Ohkoshi S, Collet E. Exploring Ultrafast Photoswitching Pathways in RbMnFe Prussian Blue Analogue. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giovanni Azzolina
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes)—UMR 6251 35000 Rennes France
| | - Hiroko Tokoro
- Department of Materials Science Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Kenta Imoto
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Marie Yoshikiyo
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shin‐ichi Ohkoshi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Eric Collet
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes)—UMR 6251 35000 Rennes France
| |
Collapse
|
11
|
Azzolina G, Tokoro H, Imoto K, Yoshikiyo M, Ohkoshi SI, Collet E. Exploring Ultrafast Photoswitching Pathways in RbMnFe Prussian Blue Analogue. Angew Chem Int Ed Engl 2021; 60:23267-23273. [PMID: 34288315 DOI: 10.1002/anie.202106959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/11/2022]
Abstract
We study by femtosecond optical pump-probe spectroscopy the photoinduced charge transfer (CT) in the RbMnFe Prussian blue analogue. Previous studies evidenced the local nature of the photoinduced MnIII FeII → MnII FeIII process, occurring within less than 1 ps. Here we show experimentally that two photoswitching pathways exist, depending on the excitation pump wavelength, which is confirmed by band structure calculations. Photoexcitation of α spins corresponds to the Mn(d-d) band, which drives reverse Jahn-Teller distortion through the population of antibonding Mn-N orbitals, and induces CT within ≈190 fs. The process launches coherent lattice torsion during the self-trapping of the CT small-polaron. Photoexcitation of β spins drives intervalence Fe→Mn CT towards non-bonding states and results in a slower dynamic.
Collapse
Affiliation(s)
- Giovanni Azzolina
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, 35000, Rennes, France
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, 35000, Rennes, France
| |
Collapse
|
12
|
Huang W, Ma X, Sato O, Wu D. Controlling dynamic magnetic properties of coordination clusters via switchable electronic configuration. Chem Soc Rev 2021; 50:6832-6870. [PMID: 34151907 DOI: 10.1039/d1cs00101a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Large-sized coordination clusters have emerged as a new class of molecular materials in which many metal atoms and organic ligands are integrated to synergize their properties. As dynamic magnetic materials, such a combination of multiple components functioning as responsive units has many advantages over monometallic systems due to the synergy between constituent components. Understanding the nature of dynamic magnetism at an atomic level is crucial for realizing the desired properties, designing responsive molecular nanomagnets, and ultimately unlocking the full potential of these nanomagnets for practical applications. Therefore, this review article highlights the recent development of large-sized coordination clusters with dynamic magnetic properties. These dynamic properties can be associated with spin transition, electron transfer, and valence fluctuation through their switchable electronic configurations. Subsequently, the article also highlights specialized characterization techniques with different timescales for supporting switching mechanisms, chemistry, and properties. Afterward, we present an overview of coordination clusters (such as cyanide-bridged and non-cyanide assemblies) with dynamic magnetic properties, namely, spin transition and electron transfer in magnetically bistable systems and mixed-valence complexes. In particular, the response mechanisms of coordination clusters are highlighted using representative examples with similar transition principles to gain insights into spin state and mixed-valence chemistry. In conclusion, we present possible solutions to challenges related to dynamic magnetic clusters and potential opportunities for a wide range of intelligent next-generation devices.
Collapse
Affiliation(s)
- Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | | | | | | |
Collapse
|
13
|
Sanchis-Gual R, Susic I, Torres-Cavanillas R, Arenas-Esteban D, Bals S, Mallah T, Coronado-Puchau M, Coronado E. The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles. Chem Commun (Camb) 2021; 57:1903-1906. [PMID: 33491696 DOI: 10.1039/d0cc08034a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Isidora Susic
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Daniel Arenas-Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France
| | - Marc Coronado-Puchau
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| |
Collapse
|
14
|
Cammarata M, Zerdane S, Balducci L, Azzolina G, Mazerat S, Exertier C, Trabuco M, Levantino M, Alonso-Mori R, Glownia JM, Song S, Catala L, Mallah T, Matar SF, Collet E. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat Chem 2021; 13:10-14. [PMID: 33288895 DOI: 10.1038/s41557-020-00597-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
Photoinduced charge-transfer is an important process in nature and technology and is responsible for the emergence of exotic functionalities, such as magnetic order for cyanide-bridged bimetallic coordination networks. Despite its broad interest and intensive developments in chemistry and material sciences, the atomic-scale description of the initial photoinduced process, which couples intermetallic charge-transfer and spin transition, has been debated for decades; it has been beyond reach due to its extreme speed. Here we study this process in a prototype cyanide-bridged CoFe system by femtosecond X-ray and optical absorption spectroscopies, enabling the disentanglement of ultrafast electronic and structural dynamics. Our results demonstrate that it is the spin transition that occurs first on the Co site within ~50 fs, and it is this that drives the subsequent Fe-to-Co charge-transfer within ~200 fs. This study represents a step towards understanding and controlling charge-transfer-based functions using light.
Collapse
Affiliation(s)
- Marco Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
| | - Serhane Zerdane
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Lodovico Balducci
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Giovanni Azzolina
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Sandra Mazerat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay, Orsay, France
| | - Cecile Exertier
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matilde Trabuco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Laure Catala
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay, Orsay, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay, Orsay, France
| | - Samir F Matar
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS, Université de Bordeaux, Pessac, France
- Lebanese German University (LGU), Sahel Alma Campus, Jounieh, Lebanon
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
| |
Collapse
|
15
|
Barlow K, Johansson JO. Ultrafast photoinduced dynamics in Prussian blue analogues. Phys Chem Chem Phys 2021; 23:8118-8131. [DOI: 10.1039/d1cp00535a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review on ultrafast photoinduced processes in molecule-based magnets with an emphasis on Prussian blue analogues.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| | - J. Olof Johansson
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| |
Collapse
|
16
|
Bonnet R, Lenfant S, Mazérat S, Mallah T, Vuillaume D. Long-range electron transport in Prussian blue analog nanocrystals. NANOSCALE 2020; 12:20374-20385. [PMID: 33020768 DOI: 10.1039/d0nr06971j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report electron transport measurements through nano-scale devices consisting of 1 to 3 Prussian blue analog (PBA) nanocrystals connected between two electrodes. We compare two types of cubic nanocrystals, CsCoIIIFeII (15 nm) and CsNiIICrIII (6 nm), deposited on highly oriented pyrolytic graphite and contacted by conducting-AFM. The measured currents show an exponential dependence with the length of the PBA nano-device (up to 45 nm), with low decay factors β, in the range 0.11-0.18 nm-1 and 0.25-0.34 nm-1 for the CsCoFe and the CsNiCr nanocrystals, respectively. From the theoretical analysis of the current-voltage curve for the nano-scale device made of a single nanoparticle, we deduce that the electron transport is mediated by the localized d bands at around 0.5 eV from the electrode Fermi energy in the two cases. By comparison with previously reported ab initio calculations, we tentatively identify the involved orbitals as the filled Fe(ii)-t2g d band (HOMO) for CsCoFe and the half-filled Ni(ii)-eg d band (SOMO) for CsNiCr. Conductance values measured for multi-nanoparticle nano-scale devices (2 and 3 nanocrystals between the electrodes) are consistent with a multi-step coherent tunneling in the off-resonance regime between adjacent PBAs, a simple model gives a strong coupling (around 0.1-0.25 eV) between the adjacent PBA nanocrystals, mediated by electrostatic interactions.
Collapse
Affiliation(s)
- Roméo Bonnet
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, 59652 Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, 59652 Villeneuve d'Ascq, France.
| | - Sandra Mazérat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France.
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France.
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|