1
|
Xian J, Chen H, Yao G, Chen F, Chen Z, Cao H, Cao L, Pan X, Tang Y, Wu J. Enantiomorphic Site-Assisted Chain End Control Stereospecific Alternating Copolymerization of Chiral Cyclic Diesters. Angew Chem Int Ed Engl 2025; 64:e202420316. [PMID: 39466998 DOI: 10.1002/anie.202420316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Stereospecific alternating copolymerization of different chiral cyclic esters is one feasible approach to enrich the structural diversity of copolyesters and tailor their properties. However, dramatically different reactivities of different cyclic esters let a perfectly stereospecific alternating polymerization of these cyclic esters be a challenge, thus the catalyst is required to balance their reactivities. Herein, a remarkable enantiomorphic site effect on chain end control was discovered and successfully utilized to balance the reactivities of highly reactive S, S-lactide (S, S-LA) and low reactive R, R-ethylglycolide (R, R-EG)/R, R-propylglycolide (R, R-PG) during their heterospecific alternating copolymerization. The enantiomorphic site of R, R-SalenAl complex can increase the relative reactivity of R, R-EG/R, R-PG and suppress that of S, S-LA, then a perfectly alternating sequence of the copolymer of S, S-LA and R, R-EG/R, R-PG can be achieved (Palt=0.96/0.91); inversely, using S, S-SalenAl complex, the significant enantiomorphic site effect enlarges the reactivity difference of two monomers, the alternating level was just 0.70/0.68 even to 0.61. Poly(S, S-LA-alt-R, R-EG) with a high alternating regularity exhibits lower glass transition temperatures and a dramatically higher elongation at break (ϵB=449±51 % (Palt=0.96) vs ϵB=6±1% (Palt=0.70)).
Collapse
Affiliation(s)
- Ji Xian
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ge Yao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fei Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhichun Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongzhang Cao
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Luya Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Chen S, Jia Z, Cao L, Li Y, Han X, Pan X, Wu J. AABB-Type Copolyester Synthesis via Highly Alternating Ring-Opening Copolymerization of Lactide and Benzylglycolide and Detailed Alternating Level Analyses. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sicheng Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Luya Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People’s Republic of China
| | - Yuju Li
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xinning Han
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
4
|
Jia Z, Li Y, Wu J. Sequence‐Controlled Alternating Copolyesters Synthesis via Selective Ring‐Opening Polymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuju Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
5
|
Jiang J, Cui Y, Jia Z, Pan X, Wu J. Living Polymerization of Chiral O-Carboxyanhydride of Mandelic Acid and Precise Stereoblock Copolymer Syntheses Using Highly Active OOO-Tridentate Bis(phenolate) Zinc Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yaqin Cui
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, People’s Republic of China
| | - Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
6
|
Wang J, Tao Y. Synthesis of Sustainable Polyesters via Organocatalytic Ring-Opening Polymerization of O-carboxyanhydrides: Advances and Perspectives. Macromol Rapid Commun 2020; 42:e2000535. [PMID: 33241601 DOI: 10.1002/marc.202000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Indexed: 11/06/2022]
Abstract
Sustainable polyesters can be furnished via ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs). Various catalysts, especially metal-based catalysts, are devised to achieve controlled ROP of OCAs. In the following mini review, the recent progress on the organocatalytic ROP of OCAs, including the usage of thiourea-based bifunctional single-molecule organocatalysts for eliminating epimerization in OCAs polymerization is summarized. Moreover, the future development of the organocatalytic ROP of OCAs for the synthesis of sustainable polyesters will be discussed.
Collapse
Affiliation(s)
- Jianqun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|