1
|
Kong X, Qiao L, Luan X, Liu L, Zhou Y, Zhang Y. Phosphorescent Dinuclear Pd-Pd Emitters in OLED Applications. Inorg Chem 2025; 64:3654-3663. [PMID: 39947125 DOI: 10.1021/acs.inorgchem.4c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Four phosphorescent dinuclear Pd-Pd complexes were synthesized by using the clamping ligand N,N'-diphenylformamidine and primary ligands of C∧N, which both have high ligand field strength to enhance the luminescence of the complexes. The single-crystal data confirmed their clamshell structures and revealed Pd-Pd distances between 2.829 and 2.864 Å. In addition, time-dependent density functional theory calculations revealed the phosphorescent nature of the metal-metal-to-ligand charge transfer and ligand-to-ligand charge transfer in these complexes. Moreover, complexes 3 and 4 were used to fabricate an OLED by a vapor phase deposition technique. At an optimal doping concentration of 5%, the 3-based device showed a maximum external quantum efficiency (EQEmax) of 8.79% for CIE coordinates of (0.49, 0.48) and the 4-based device showed an EQEmax of 13.10% for CIE coordinates of (0.61, 0.37).
Collapse
Affiliation(s)
- Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China
| | - Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China
| | - Xueyin Luan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China
| | - Liyin Liu
- Renishaw (Shanghai) Trading Company Ltd., JingAn District, Shanghai 200436, China
| | - Yan Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
2
|
Cheong K, Han S, Lee JY. High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3725-3732. [PMID: 39742433 DOI: 10.1021/acsami.4c18872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this study, a tetradentate Pt(II) complex designed to have N-heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges. These blue OLEDs exhibit deep-blue emissions at 455 nm with color coordinates of (0.139, 0.090), a full width at half-maximum of 17 nm, and a high maximum external quantum efficiency of 24.1% at a doping concentration of 10 wt %. In addition, the OLED performance was stably maintained at a doping concentration of 20 wt %. Overall, the anchor-shaped dip group significantly enhances the rigidity of the ligand in the tetradentate Pt(II) complex, effectively reducing intermolecular interactions and allowing the complex to function as a highly efficient and pure deep-blue emitter.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Seungwon Han
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
3
|
Qiao L, Kong X, Li K, Yuan L, Shen Y, Zhang Y, Zhou L. Phosphorescent Pd II-Pd II Emitter-Based Red OLEDs with an EQE max of 20.52. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404621. [PMID: 39031006 PMCID: PMC11425235 DOI: 10.1002/advs.202404621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Three dinuclear Pd(II) complexes (1, 2, and 3) with intense red phosphorescence at room temperature are here synthesized using strong ligand field strength compounds. All three complexes are characterized by nuclear magnetic resonance, high-resolution mass spectrometry, and elemental analyses. Complexes 2 and 3 are characterized by single-crystal X-ray diffraction. The crystalline data of 2 and 3 reveal complex double-layer structures, with Pd-Pd distances of 2.8690(9) Å and 2.8584(17) Å, respectively. Furthermore, complexes 1, 2, and 3 show phosphorescence at room temperature in their solid states at the wavelengths of 678, 601, and 672 nm, respectively. In addition, they show phosphorescence at 634, 635, and 582 nm, respectively, in the 2 wt.% (PMMA) films, and phosphorescence at 670, 675, and 589 nm, respectively, in the deoxygenated CH2Cl2 solutions. Among three complexes, complex 1 shows red emission at 634 nm with phosphorescent quantum yield Ф = 67% in the 2 wt.% PMMA film. Furthermore, complex 1-based organic light-emitting diode is fabricated using a vapor-phase deposition process, and their maximum external quantum efficiency reaches 20.52%, which is the highest percentage obtained by using the dinuclear Pd(II) complex triplet emitters with the CIE coordinates of (0.62, 0.38).
Collapse
Affiliation(s)
- Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
4
|
Buss S, Ketter L, Brünink D, Schwab D, Klenner S, Hepp A, Kösters J, Schmidt TJ, Pöttgen R, Doltsinis NL, Strassert CA. Antiprotozoal Pt(II) Complexes as Luminophores Bearing Monodentate P/As/Sb-Based Donors: An X-ray Diffractometric, Photoluminescence, and 121Sb- Mössbauer Spectroscopic Study with TD-DFT-Guided Interpretation and Predictive Extrapolation toward Bi. Inorg Chem 2024; 63:10114-10126. [PMID: 38780307 DOI: 10.1021/acs.inorgchem.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, it is demonstrated that the radiative rate constant of phosphorescent metal complexes can be substantially enhanced using monodentate ancillary ligands containing heavy donor atoms. Thus, the chlorido coligand from a Pt(II) complex bearing a monoanionic tridentate C^N*N luminophore ([PtLCl]) was replaced by triphenylphosphane (PPh3) and its heavier pnictogen congeners (i.e., PnPh3 to yield [PtL(PnPh3)]). Due to the high tridentate-ligand-centered character of the excited states, the P-related radiative rate is rather low while showing a significant boost upon replacement of the P donor by heavier As- and Sb-based units. The syntheses of the three complexes containing PPh3, AsPh3, and SbPh3 were completed by unambiguous characterization of the clean products using exact mass spectrometry, X-ray diffractometry, bidimensional NMR, and 121Sb-Mössbauer spectroscopy (for [PtL(SbPh3)]) as well as steady state and time-resolved photoluminescence spectroscopies. Hence, it was shown that the hybridization defects of the Vth main-group atoms can be overcome by complexation with the Pt center. Notably, the enhancement of the radiative rate constants mediated by heavier coligands was achieved without significantly influencing the character of the excited states. A rationalization of the results was achieved by TD-DFT. Even though the Bi-based homologue was not accessible due to phenylation side reactions, the experimental data allowed a reasonable extrapolation of the structural features whereas the hybridization defects and the excited state properties related to the Bi-species and its phosphorescence rate can be predicted by theory. The three complexes showed an interesting antiprotozoal activity, which was unexpectedly notorious for the P-containing complex. This work could pave the road toward new efficient materials for optoelectronics and novel antiparasitic drugs.
Collapse
Affiliation(s)
- Stefan Buss
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| | - Lukas Ketter
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| | - Dana Brünink
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Dominik Schwab
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Steffen Klenner
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry, Universität Münster, Corrensstraße 48, Münster 48149, Germany
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| |
Collapse
|
5
|
Li G, Liu Y, Xu K, Zhang C, Chen J, Chu Q, Yang YF, She Y. Perimidocarbene-Based Tetradentate Platinum(II) Complexes with an Unexpectedly Negligible 3MLCT Character. Inorg Chem 2024; 63:6435-6444. [PMID: 38537132 DOI: 10.1021/acs.inorgchem.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Two novel six-membered perimidocarbene (PIC)-based tetradentate Pt(II) complexes were designed and successfully synthesized. Systematical experimental and theoretical studies suggest that the PIC moiety greatly affects the frontier orbitals, as well as the photophysical and excited-state properties of the Pt(II) complexes. PtYK2 has a broad emission spectrum peaking at 576 nm with a shoulder band at 620 nm, along with a full width at half-maximum (FWHM) value of 100.0 nm at 77 K in 2-MeTHF; however, the emission spectrum is slightly red-shifted with a dominant peak at 610 nm and a FWHM value of 125.0 nm at room temperature in a poly(methyl methacrylate) (PMMA) film. Time-dependent-density functional theory and natural transition orbital analyses reveal that PtYK2 has a 3LC (3πPIC* → πPIC)-dominated character with an unexpectedly negligible contribution of 3MLCT transition (0.68%) in the T1 state, which results in a broad emission spectrum and a relatively low quantum efficiency of 7.4% in the PMMA film.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuankuo Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chengyao Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianqiang Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qingshan Chu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
6
|
Gu J, Shi W, Zheng H, Chen G, Wei B, Wong WY. The Novel Organic Emitters for High-Performance Narrow-Band Deep Blue OLEDs. Top Curr Chem (Cham) 2023; 381:26. [PMID: 37632653 DOI: 10.1007/s41061-023-00436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Narrow-band deep-blue organic light-emitting diodes (OLEDs) have played a key role in the field of high-quality full-color displays. However, because of the considerable challenges of inherent band gaps, unbalanced carrier injection and the lack of molecular structures, narrow-band deep-blue emitters develop slowly compared with red- and green-emitting materials. Encouragingly, with the continuous efforts of scientists in recent years, great progress has been made in the molecule design and material synthesis of highly efficient narrow-band deep-blue emitters. The typical deep-blue emitters which exhibit narrow emission with a full width at half maximum of < 50 nm are summarized in this article. They are divided into the three categories: fluorescence, phosphorescence and thermally activated delayed fluorescence. The methods of molecular design for realizing narrow-band deep-blue emission are described in detail and future research directions are also discussed in this article.
Collapse
Affiliation(s)
- Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haixia Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Guo Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
7
|
Sun Y, Zhan F, Huang D, Wang X, Dou L, Xu K, Yang YF, Li G, She Y. 8-Phenylquinoline-Based Tetradentate 6/6/6 Platinum(II) Complexes for Near-Infrared Emitters. Inorg Chem 2023; 62:13156-13164. [PMID: 37531143 DOI: 10.1021/acs.inorgchem.3c02356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of novel tetradentate 6/6/6 Pt(II) complexes containing an 8-phenylquinoline-benzo[d]imidazole-carbazole ligand was designed; the Pt(II) complexes could be synthesized by metalizing the corresponding ligand with K2PtCl4 in high isolated yields of 60-90%. Experimental and theoretical studies suggested that the ligand modification of the quinoline moieties of the Pt(II) complexes could tune their electrochemical, photophysical, and excited-state properties. Notably, all the Pt(II) complexes exhibited highly electrochemical stabilities with reversible redox processes except the quasi-reversible reduction of PtYL3. The large π-conjugation of the ligand together with increased metal-to-ligand charge-transfer (3MLCT) characters in T1 states enabled the Pt(II) complexes to show broad Gaussian-type NIR emission spectra with high photoluminescence quantum efficiencies of 1.2-1.5% and short τ of 0.8-1.5 μs in dichloromethane at room temperature. This work should provide a valuable reference for the design and development of monomer NIR emitters.
Collapse
Affiliation(s)
- Yulu Sun
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Disheng Huang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lijie Dou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
8
|
Yang JG, Feng X, Li N, Li J, Song XF, Li MD, Cui G, Zhang J, Jiang C, Yang C, Li K. Highly efficient and stable thermally activated delayed fluorescent palladium(II) complexes for organic light-emitting diodes. SCIENCE ADVANCES 2023; 9:eadh0198. [PMID: 37315147 DOI: 10.1126/sciadv.adh0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Transition metal complexes exhibiting thermally activated delayed fluorescence (TADF) remain underdeveloped for organic light-emitting diodes (OLEDs). Here, we describe a design of TADF Pd(II) complexes featuring metal-perturbed intraligand charge-transfer excited states. Two orange- and red-emitting complexes with efficiencies of 82 and 89% and lifetimes of 2.19 and 0.97 μs have been developed. Combined transient spectroscopic and theoretical studies on one complex reveal a metal-perturbed fast intersystem crossing process. OLEDs using the Pd(II) complexes show maximum external quantum efficiencies of 27.5 to 31.4% and small roll-offs down to 1% at 1000 cd m-2. Moreover, the Pd(II) complexes show exceptional operational stability with LT95 values over 220 hours at 1000 cd m-2, benefiting from the use of strong σ-donating ligands and the presence of multiple intramolecular noncovalent interactions beside their short emission lifetimes. This study demonstrates a promising approach for developing efficient and robust luminescent complexes without using the third-row transition metals.
Collapse
Affiliation(s)
- Jian-Gong Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xingyu Feng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Jiayu Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515031, P. R. China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515031, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Jingling Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Chenglin Jiang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Dalmau D, Urriolabeitia EP. Luminescence and Palladium: The Odd Couple. Molecules 2023; 28:molecules28062663. [PMID: 36985639 PMCID: PMC10054068 DOI: 10.3390/molecules28062663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The synthesis, photophysical properties, and applications of highly fluorescent and phosphorescent palladium complexes are reviewed, covering the period 2018–2022. Despite the fact that the Pd atom appears closely related with an efficient quenching of the fluorescence of different molecules, different synthetic strategies have been recently optimized to achieve the preservation and even the amplification of the luminescent properties of several fluorophores after Pd incorporation. Beyond classical methodologies such as orthopalladation or the use of highly emissive ligands as porphyrins and related systems (for instance, biladiene), new concepts such as AIE (Aggregation Induced Emission) in metallacages or in coordination-driven supramolecular compounds (CDS) by restriction of intramolecular motions (RIM), or complexes showing TADF (Thermally Activated Delayed Fluorescence), are here described and analysed. Without pretending to be comprehensive, selected examples of applications in areas such as the fabrication of lighting devices, biological markers, photodynamic therapy, or oxygen sensing are also here reported.
Collapse
|
10
|
Blue Emissive Palladium(II) Complex with Benzoquinoline and N-heterocyclic Carbene Ligands. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
11
|
Li G, Wen J, Zhan F, Lou W, Yang YF, Hu Y, She Y. Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorg Chem 2022; 61:11218-11231. [PMID: 35834800 DOI: 10.1021/acs.inorgchem.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl (bp)-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the bp-based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change. All the bp-based Pt(II) emitters exhibited vibronically featured emission spectra with dominant peaks at 502-505 nm and photoluminescent quantum yields of 24-34% in dichloromethane solution. Green OLED using Pt(bp-12) as an emitter achieved a maximum brightness (Lmax) of 16,644 cd/m2.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianfeng Wen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
12
|
Li G, Guo H, Fang X, Yang Y, Sun Y, Lou W, Zhang Q, She Y. Tuning the Excited State of Tetradentate Pd(
II
) and Pt(
II
) Complexes through Benzannulated
N
‐Heteroaromatic
Ring and Central Metal. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guijie Li
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Hua Guo
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xiaoli Fang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yun‐Fang Yang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yulu Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Weiwei Lou
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yuanbin She
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
13
|
Stück R, Krause M, Brünink D, Buss S, Doltsinis NL, Strassert CA, Klein A. Luminescent Pd(II) Complexes with Tridentate
−
Aryl‐pyridine‐(benzo)thiazole Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- René Stück
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| | - Maren Krause
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| | - Dana Brünink
- Westfälische Wilhelms-Universität Münster Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Stefan Buss
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech Heisenbergstraße 11 D-48149 Münster Germany
| | - Nikos L. Doltsinis
- Westfälische Wilhelms-Universität Münster Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Cristian A. Strassert
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech Heisenbergstraße 11 D-48149 Münster Germany
| | - Axel Klein
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| |
Collapse
|
14
|
She Y, Xu K, Fang X, Yang YF, Lou W, Hu Y, Zhang Q, Li G. Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorg Chem 2021; 60:12972-12983. [PMID: 34374530 DOI: 10.1021/acs.inorgchem.1c01405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel tetradentate Pt(II) and Pd(II) complexes containing fused 6/6/6 or 6/6/5 metallocycles employing azacarbazolylcarbazole (ACzCz)-based ligands was developed. Systematic experimental and theoretical studies suggest that both the ligand structures and the central metal ions have great influences on the electrochemical and photophysical properties of the complexes. The time-dependent density functional theory (TD-DFT) calculations and natural transition orbital (NTO) analyses reveal that the Pt(II) complexes possess 10.8-15.2% metal-to-ligand charge transfer (3MLCT) mixed with ligand-centered (3LC) characters, by contrast, the Pd(II) complexes exhibit significantly decreased 4.2-7.1% 3MLCT characters and enhanced 3LC compositions. All of the Pt(II) and Pd(II) complexes possess various channels for the intersystem crossing (ISC) on the basis of small energy gaps ΔES1-Tn and matching transition orbital compositions; moreover, Pd(ACzCz-1) and Pd(ACzCz-2) also possess efficient reverse intersystem crossing (RISC) to show both delayed fluorescence (DF) and phosphorescence in PMMA films at room temperature (RT). Pt(ACzCz-3) has ΦPL values of 57% with a τ of 5.1 μs in dichloromethane at RT and 50% with 3.9 μs in PMMA at RT. Notably, Pd(ACzCz-1) exhibits ultralong low-temperature phosphorescence with a τ of 1307 μs. Pt(ACzCz-2)-based green OLED employing 26mCPy as the host demonstrated a peak EQE of 8.2% and a Lmax of 24065 cd/m2.
Collapse
Affiliation(s)
- Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guijie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
15
|
Li G, Zheng J, Fang X, Xu K, Yang YF, Wu J, Cao L, Li J, She Y. N-Heterocyclic Carbene-Based Tetradentate Pd(II) Complexes for Deep-Blue Phosphorescent Materials. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Jianbing Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Kewei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Jiang Wu
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Linyu Cao
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Jian Li
- Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85284, United States
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| |
Collapse
|