1
|
Hazer MSA, Malola S, Häkkinen H. Metal-ligand bond in group-11 complexes and nanoclusters. Phys Chem Chem Phys 2024; 26:21954-21964. [PMID: 39010760 DOI: 10.1039/d4cp00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Density functional theory is used to study geometric, energetic, and electronic properties of metal-ligand bonds in a series of group-11 metal complexes and ligand-protected metal clusters. We study complexes as the forms of M-L (L = SCH3, SC8H9, PPh3, NHCMe, NHCEt, NHCiPr, NHCBn, CCMe, CCPh) and L1-M-L2 (L1 = NHCBn, PPh3, and L2 = CCPh). Furthermore, we study clusters denoted as [M13L6Br6]- (L = PPh3, NHCMe, NHCEt, NHCiPr, NHCBn). The systems were studied at the standard GGA level using the PBE functional and including vdW corrections via BEEF-vdW. Generally, Au has the highest binding energies, followed by Cu and Ag. PBE and BEEF-vdW functionals show the order Ag-L > Au-L > Cu-L for bond lengths in both M-L complexes and metal clusters. In clusters, the smallest side group (CH3) in NHCs leads to the largest binding energy whereas no significant variations are seen concerning different side groups of NHC in M-L complexes. By analyzing the projected density of states and molecular orbitals in complexes and clusters, the M-thiolate bonds were shown to have σ and π bond characteristics whereas phosphines and carbenes were creating σ bonds to the transition metals. Interestingly, this analysis revealed divergent behavior for M-alkynyl complexes: while the CCMe group displayed both σ and π bonding features, the CCPh ligand was found to possess only σ bond properties in direct head-to-head binding configuration. Moreover, synergetic effects increase the average binding strength to the metal atom significantly in complexes of two different ligands and underline the potential of adding Cu to synthesize structurally richer cluster systems. This study helps in understanding the effects of different ligands on the stability of M-L complexes and clusters and suggests that PPh3 and NHCs-protected Cu clusters are most stable after Au clusters.
Collapse
Affiliation(s)
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
2
|
Chen Z, Sun F, Tang Q. Thermal Stability and Electronic Properties of N-Heterocyclic Carbene-Protected Au 13 Nanocluster and Phosphine-Protected Analogues. J Phys Chem Lett 2023; 14:10648-10656. [PMID: 38031664 DOI: 10.1021/acs.jpclett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Lei Z, Zhao P, Pei XL, Ube H, Ehara M, Shionoya M. Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes. Chem Sci 2023; 14:6207-6215. [PMID: 37325149 PMCID: PMC10266449 DOI: 10.1039/d3sc01976d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
4
|
Sun J, Tang X, Tang J, Zhang Y, Li Z, Chaolumen, Guo S, Shen H. Simple Approach toward N-Heterocyclic Carbene-Protected Gold Nanoclusters. Inorg Chem 2023; 62:5088-5094. [PMID: 36947487 DOI: 10.1021/acs.inorgchem.2c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Little advance has been made toward developing alternative bottom-up synthetic strategies for N-heterocyclic carbene (NHC)-stabilized gold nanoclusters, although this unique class of nanomaterials has exhibited exciting properties. We report in this work a simple and straightforward approach toward NHC-ligated gold nanoclusters by using imidazolium salts rather than free carbenes or NHC-coordinated gold complexes (NHC-Au-X, X is counterions) as precursors. Illustrated here is a one-pot and one-step preparation of an NHC-stabilized Au13Br4 cluster that features a distinct molecular formula, surface motifs, and assembling modes via chemical reduction of dpaAu, NaOMe, and FNHCBn·HBr by NaBH4 (Hdpa is dipyridylamine; FNHCBn·HBr is 1,3-dibenzyl-5,6-difluoro-1H-benzo[d]imidazole-3-ium bromide). In situ UV-vis and NMR studies have elucidated the base-assisted formation of NHCs from imidazolium salts for the protection of the metal core. This work not only reports a new NHC-ligated superatom that completes the Au13 library, thus facilitating structure-property studies, but also opens the door to explore underlying analogues in a facile and reasonable way.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiaqi Tang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yuhao Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zilin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Chaolumen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Hu Q, Zhang C, Wu X, Liang G, Wang L, Niu X, Wang Z, Si WD, Han Y, Huang R, Xiao J, Sun D. Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X-Ray Imaging. Angew Chem Int Ed Engl 2023; 62:e202217784. [PMID: 36647290 DOI: 10.1002/anie.202217784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The low efficiency triplet emission of hybrid copper(I) iodide clusters is a critical obstacle to their further practical optoelectronic application. Herein, we present an efficient hybrid copper(I) iodide cluster emitter (DBA)4 Cu4 I4 , where the cooperation of excited state structure reorganization and the metallophilicity interaction enables ultra-bright triplet yellow-orange emission with a photoluminescence quantum yield over 94.9 %, and the phonon-assisted de-trapping process of exciton induces the negative thermal quenching effect at 80-300 K. We also investigate the potential of this emitter for X-ray imaging. The (DBA)4 Cu4 I4 wafer demonstrates a light yield higher than 104 photons MeV-1 and a high spatial resolution of ≈5.0 lp mm-1 , showing great potential in practical X-ray imaging applications. Our new copper(I) iodide cluster emitter can serve as a model for investigating the thermodynamic mechanism of photoluminescence in hybrid copper(I) halide phosphorescence materials.
Collapse
Affiliation(s)
- Qingsong Hu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Xian Wu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Xiaowei Niu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yibo Han
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ruiqin Huang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiawen Xiao
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
6
|
Wei J, Kahlal S, Halet JF, Muñoz-Castro A, Saillard JY. Ligand-Induced Cuboctahedral versus Icosahedral Core Isomerism within Eight-Electron Heterocyclic-Carbene-Protected Gold Nanoclusters. Inorg Chem 2022; 61:8623-8628. [PMID: 35640274 DOI: 10.1021/acs.inorgchem.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled structural modification of ligand-protected gold clusters is evaluated by a proper variation of the size and shape of N-heterocyclic carbene (NHC) ligands. Density functional theory calculations show that the Au13 core of [Au13(NHC)8Br4]+ can be shaped into an icosahedron and/or a so far unexpected cuboctahedron depending on the sterical effect inferred by the NHC ligand side arms. As a result, the cluster properties can be modified, encouraging further exploration on controlled core isomerization in ligated gold cluster chemistry.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Jean-François Halet
- Laboratory for Innovative Key Materials and Structures, National Institute for Materials Science─Saint-Gobain, CNRS, IRL 3629, Tsukuba 305-0044, Japan
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| |
Collapse
|
7
|
|
8
|
Muñoz-Castro A. N-Heterocyclic carbene derivatives to modify gold superatom characteristics. Tailorable electronic and optical properties of [Au 11(PPh 3) 7LCl 2] + as a cluster from relativistic DFT. Phys Chem Chem Phys 2022; 24:5965-5973. [PMID: 35195620 DOI: 10.1039/d1cp04310b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically precise gold superatoms are useful building blocks whose properties can be tuned by the proper choice of ligands in the protecting ligand layer. Herein, different N-heterocyclic carbene (NHC) derivatives of the prototypical [Au11(PPh3)8Cl2]+ cluster were evaluated by the replacement of a single ligand, which led to isoelectronic [Au11(PPh3)7(NHC)Cl2]+ species, enabling further understanding of the possible changes in the resulting cluster properties. Our results reveal the great variation in the HOMO-LUMO gap and optical features when going from strong to weak σ-donor NHC ligands. The Au11 core retains similar features throughout the series, and the lowest unoccupied orbital (LUMO) is further stabilized, indicating greater π*-NHC character for the weaker σ-donor ligands, which favors directional core-ligand optical charge transfer to a single ligand. The ligand-tailored behavior of the [Au11(PPh3)7LCl2]+ cluster underlies its tunable characteristics, indicating its potential use in novel devices as building blocks of nanostructured materials, which favors further versatility and applications of superatomic clusters.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| |
Collapse
|
9
|
Wei J, Kahlal S, Halet JF, Saillard JY, Muñoz-Castro A. Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au 13 Superatomic Clusters. J Phys Chem A 2022; 126:536-545. [PMID: 35044183 DOI: 10.1021/acs.jpca.1c09084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) belong to a relevant area offering useful templates with tunable properties toward functional nanostructures. In this work, we explored the feasible incorporation of N-heterocyclic carbenes (NHCs), as part of the protecting-ligand shell in AuNCs. Our results, which are based on the substitution of phosphine ligands in experimentally characterized AuNCs by NHCs in various eight-electron superatoms Au13 and M4Au9 (M = Cu, Ag), indicate similar electronic structure and stability but somewhat different optical properties. These findings support the feasible obtention of novel targets for explorative synthetic efforts featuring NHC ligands on medium-sized species based on the recurrent Au13 icosahedral core. The hypothetical species appear to be interesting templates for building blocks in nanostructured materials with tuned properties, which encourage experimental exploration of ligand versatility in homo- and heterometallic superatomic clusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, 8910188 Santiago, Chile
| |
Collapse
|
10
|
Day PN, Pachter R, Nguyen KA. Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Phys Chem Chem Phys 2022; 24:11234-11248. [DOI: 10.1039/d2cp01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional....
Collapse
|
11
|
Cowan MJ, Nagarajan AV, Mpourmpakis G. Correlating structural rules with electronic properties of ligand-protected alloy nanoclusters. J Chem Phys 2021; 155:024303. [PMID: 34266280 DOI: 10.1063/5.0056690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thiolate protected gold nanoclusters (TPNCs) are a unique class of nanomaterials finding applications in various fields, such as biomedicine, optics, and catalysis. The atomic precision of their structure, characterized through single crystal x-ray diffraction, enables the accurate investigation of their physicochemical properties through electronic structure calculations. Recent experimental efforts have led to the successful heterometal doping of TPNCs, potentially unlocking a large domain of bimetallic TPNCs for targeted applications. However, how TPNC size, bimetallic composition, and location of dopants influence electronic structure is unknown. To this end, we introduce novel structure-property relationships (SPRs) that predict electronic properties such as ionization potential (IP) and electron affinity (EA) of AgAu TPNCs based on physically relevant descriptors. The models are constructed by first generating a hypothetical AgAu TPNC dataset of 368 structures with sizes varying from 36 to 279 metal atoms. Using our dataset calculated with density functional theory (DFT), we employed systematic analyses to unravel size, composition, and, importantly, core-shell effects on TPNC EA and IP behavior. We develop generalized SPRs that are able to predict electronic properties across the AgAu TPNC materials space. The models leverage the same three fundamental descriptors (i.e., size, composition, and core-shell makeup) that do not require DFT calculations and rely only on simple atom counting, opening avenues for high throughput bimetallic TPNC screening for targeted applications. This work is a first step toward finely controlling TPNC electronic properties through heterometal doping using high throughput computational means.
Collapse
Affiliation(s)
- Michael J Cowan
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| | | | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| |
Collapse
|
12
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|