1
|
Liu XH, Zhang LB, Wang JL, Xu N, Zhang XY, Chang ZH, Wang XL. Two {Cu I[P 4Mo 6] 2}-Based Coordination Polymers Incorporating In Situ Converted Tetrapyridyl Ligands for Trace Analysis of Nitrofuran Antibiotics. Inorg Chem 2024; 63:9058-9065. [PMID: 38720438 DOI: 10.1021/acs.inorgchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Li-Bo Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Jin-Ling Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Na Xu
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yan Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Zhi-Han Chang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Shi YS, Xiao T, Yang DD, Xia ZG, Zheng XJ. Dynamic Fluorescence Sensing of Bromide Ions by Photochromic Bi(III)-Coordination Polymers Based on a Ligand Integrated by Naphthalene Diimides and Pyridinium in Solution and Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309076. [PMID: 38032168 DOI: 10.1002/smll.202309076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Bismuth(III)-based complexes have garnered increasing attention in fluorescence sensing due to their environmentally friendly and sustainable characteristics. A Bismuth(III) coordination polymer (CP),1-Cl based on a naphthalene diimides(NDI)-pyridinium is synthesized by an in situ reaction method. Notable for its sensitivity to visible light, 1-Cl shows excellent photochromic properties, and the integration of NDI and pyridinium in one ligand makes photogenerated radicals more stable. Structural analysis and theoretical calculations are employed to investigate the potential pathway of photoinduced electron transfer (ET) during the photochromic process. Notably, in aqueous solutions, 1-Cl displays an extraordinary fluorescence enhancement response to bromide ion (Br-), resulting in a distinct transition from yellow to orange in color. The potential mechanism of fluorescence sensing has been revealed through single-crystal X-ray diffraction analysis. This insight highlights a continuous substitution process where the Cl- ions are successively replaced by Br- ions. Consequently, a single-crystal-to-single-crystal transformation (SCSC) occurs, yielding the intermediate species, 1-Cl-Br, which ultimately transforms into the final product, 1-Br. Finally, the photochromic film is successfully prepared and applied to practical applications such as ink-free printing, information anti-counterfeiting, and the visual detection of Br- ions. This work combines photochromism with fluorescence sensing, broadening the research field and practical application of photochromic materials.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhong-Gang Xia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
3
|
Wang X, Mao W, Wang D, Hu X, Liu B, Su Z. Hourglass shaped polyoxometalate-based materials as electrochemical sensors for the detection of trace Cr(VI) in a wide pH range. Talanta 2023; 257:124270. [PMID: 36801555 DOI: 10.1016/j.talanta.2023.124270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Due to Chromium hexavalent Cr(VI) is one of the most carcinogenic toxic ions, it is essential for finding a low-cost, efficient and highly selective detection method. Considering the wide range of pH detection in water, a major issue is exploring high sensitive electrocatalyst. Thus, two crystalline materials with hourglass {P4Mo6} clusters in different metal centers were synthesized and had fabulous Cr(VI) detection performance in a wide pH range. At pH = 0, the sensitivities of CUST-572 and CUST-573 were 133.89 μA μM-1 and 30.05 μA μM-1, and the detection limits (LODs) of Cr(VI) were 26.81 nM and 50.63 nM which met World Health Organization (WHO) standard for drinking water. CUST-572 and CUST-573 also had good detection performance at pH = 1-4. In actual water samples, CUST-572 and CUST-573 also possessed sensitivities of 94.79 μA μM-1 and 20.09 μA μM-1 and LODs were 28.25 nM and 52.24 nM, showing high selectivity and chemical stability. The difference of the detection performance of CUST-572 and CUST-573 were mainly attributed to the interaction between {P4Mo6} and different metal centers of crystalline materials. In this work, electrochemical sensors for Cr(VI) detection in a wide pH range were explored, providing important guidance for the design of efficient electrochemical sensors for ultra-trace detection of heavy metal ions in practical environments.
Collapse
Affiliation(s)
- Xinting Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenjia Mao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Dongsheng Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Bailing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing, China.
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Sang T, Zhong Y, Jiang S, Xue XG, Hu CH, Wang DH, Ye JC, Wei NN, Liu H. EDTA promoted Cr(VI) reduction in semiconductor/insulator photocatalyst: Performance, mechanistic insight and DFT calculation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Yin XY, Zhang YQ, Ma YY, He JY, Song H, Han ZG. Bifunctional Sensors Based on Phosphomolybdates for Detection of Inorganic Hexavalent Chromium and Organic Tetracycline. Inorg Chem 2022; 61:13174-13183. [PMID: 35944245 DOI: 10.1021/acs.inorgchem.2c02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring effective sensors for detecting possible hazards in a water system are greatly significant. This work proposed a strategy for stable and effective bifunctional sensors via incorporating hourglass-type phosphomolybdates into metal-organic fragments to construct a high-dimensional framework. Two hourglass-type phosphomolybdate-based electrochemical sensors toward heavy metal ion Cr(VI) and tetracycline (TC) detection were designed with the formula [CoII2(H2O)4NaI2][CoII(Hbpe)][NaI(bpe)1.5]{CoII[PV4MoV6O31H6]2}·9H2O (1) and [CoII(H2O)4NaI3][CoII(Hbpe)][CoII(bpe)]{CoII[PV4MoV6O31H6]2}·9H2O (2) [bpe = 1,2-di(4-pyridyl)ethylene]. Structural analysis showed that hybrids 1 and 2 possess three-dimensional POM-supported network features with favorable stability and exhibit reversible redox properties. Experiments found that this kind of hybrids as efficient sensors have excellent electrochemical performance toward Cr(VI) detection with high sensitivities of 0.111 μA·μM-1 for 1 and 0.141 μA·μM-1 for 2, fast response time of 1 s, and low detection limits of 30 nM for 1 and 27 nM for 2, which far meet the standard of WHO for drinking water. Moreover, hybrids 1-2 also exhibit fast responses to TC detection with sensitivities of 0.0073 and 0.022 μA·mM-1 and detection limits of 0.426 and 0.084 mM. This work offers a novel strategy for the purposeful design of efficient POM-based electrochemical sensors for accurate determination of contaminants in a practical water system.
Collapse
Affiliation(s)
- Xiao-Yu Yin
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Ya-Qi Zhang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Hao Song
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Wang X, Wang Y, Xu N, Wang XL. Cobalt complexes tuned by Anderson-type polyoxometalates and bis-amide derivative ligands featuring a 'V'-like connector for efficient ampere sensing and the visible-light catalytic reduction of Cr(VI). Dalton Trans 2022; 51:7109-7117. [PMID: 35452061 DOI: 10.1039/d1dt04341b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To exploit polyoxometalate (POM)-based metal-organic complexes (MOCs) with outstanding electro- and photo-chemical performances, two new bis-amide derivative N-donor ligands featuring a 'V'-like connector, 4,4'-bis(3-pyridinecarboxamide)phenylmethane (L1) and 4,4'-bis(3-pyridinecarboxamide)phenylketone (L2), were designed and reacted with Anderson-type POMs in the presence of Co(II) ions under solvothermal conditions, which generated four MOCs: [Co2(L1)2(AlMo6H5O24)]·4H2O (1), [Co2(HL1)2(H2O)6(TeMo6O24)]·2H2O (2), [Co2(HL2)2(H2O)4[AlMo6H6O24]2]·5H2O (3), and [Co2(HL2)2(H2O)6(TeMo6O24)]·2H2O (4). All the complexes showed supramolecular structures via hydrogen bond interaction, which resulted from the 2D layers for 1, the satellite-like structural units for 2 and 4, but the 1D chains for 3. In these structures, the POMs and organic ligands exhibited different coordination modes. Both 2 and 4 showed efficient ampere sensing activities for Cr(VI) with lower limits of detection of 0.029 and 0.038 μM, respectively. Complexes 1 and 2 showed good visible-light catalytic behavior toward the reduction of Cr(VI), which offers more chances for developing electrochemical sensors and photocatalysts for Cr(VI).
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Yue Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
7
|
Liu Q, Lin H, Lu J, Zhang Y, Wang X. Three Anderson-type POMOFs with bis(pyrimidine)-bis(amide) ligands: Synthesis, fascinating structures and performances of electrochemical sensing and dye adsorption. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Liu F, Zhou Q, Li Y, Pang J. Cu-Doped Boron Nitride Nanosheets for Solid-Phase Extraction and Determination of Rhodamine B in Foods Matrix. NANOMATERIALS 2022; 12:nano12030318. [PMID: 35159662 PMCID: PMC8838717 DOI: 10.3390/nano12030318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/26/2021] [Accepted: 01/16/2022] [Indexed: 12/10/2022]
Abstract
Cu-doped boron nitride nanosheets (Cu-BNNS) were first reported as promising adsorbents for the solid-phase extraction and determination of rhodamine B (RhB) dye in a food matrix. Different characterizations, including XRD, FTIR, XPS, SEM, and TEM, were performed to confirm the formation of the adsorbent. Then, the adsorption performance of Cu-BNNS was investigated by adsorption kinetics, isotherms, and thermodynamics. Multiple extraction parameters were optimized by single-factor experiments. Under optimized conditions, the recoveries in the food matrix were in the range of 89.8–95.4%, with the spiked levels of 100 ng/mL and 500 ng/mL, respectively. This novel system was expected to have great potential to detect RhB in a wide variety of real samples.
Collapse
Affiliation(s)
- Fujie Liu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China;
| | - Qihang Zhou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
| | - Yurui Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
| | - Jingyu Pang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
- Correspondence: ; Tel.: +86-0371-23881589
| |
Collapse
|
9
|
Bi HX, Yin XY, Zhang XJ, Ma YY, Han ZG. Efficient visible-light-driven reduction of hexavalent chromium catalyzed by conjugated organic species modified hourglass-type phosphomolybdate hybrids. CrystEngComm 2022. [DOI: 10.1039/d1ce01467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four conjugated-organic-species modified hourglass-type phosphomolybdate hybrids with a 0-D + 1-D → 3-D supramolecular structure exhibited favorable photocatalytic activity and stability towards Cr(vi) reduction.
Collapse
Affiliation(s)
- Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiao-Yu Yin
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiu-Juan Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
10
|
Liu XM, Kang RK, Wang JL, Li JN, Chen QL, Xu Y. A Purely Inorganic Quasi-Keggin Polyoxometalate for Photocatalytic Conversion of Carbon Dioxide to Carbon Monoxide. Chempluschem 2021; 86:1014-1020. [PMID: 34286917 DOI: 10.1002/cplu.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Indexed: 01/06/2023]
Abstract
A pure inorganic cluster, H47 Na2 Co4 Mo24 (PO4 )11 O72 ⋅ 15H2 O (denoted as {Co4 Mo24 }), has been successfully synthesized by hydrothermal method. Notably, the assembly of a central {Co2 PO4 } tetrahedron and four peripheral {Co[P4 Mo6 ]} fragments gives rise to a rare "quasi-Keggin" structure of {Co4 Mo24 }, in which Co linkers continue to bridge adjacent substructures, resulting in the generation of 3D framework with large cavities. Benefitting from the combination of strong reductive {P4 Mo6 } units and Co active centers, the photocatalytic system with {Co4 Mo24 } as heterogeneous catalyst exhibits excellent activity for CO2 conversion to CO, offering the CO formation rate of 1848.3 μmol g-1 h-1 with high selectivity of 97.0 %. Besides, thermogravimetric and X-ray diffraction analysis confirm that {Co4 Mo24 } can maintain stable during the photocatalytic reaction process.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qiao-Ling Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|