1
|
Collobert L, Bridou L, Garda Z, Maury O, Tóth É, Platas-Iglesias C, Tripier R, Beyler M. Exploring the Coordination Chemistry and Potential Applications of PC3PA-Based Lanthanide Complexes: Synthesis, Solution Structure, Luminescence, and Relaxation Properties. Inorg Chem 2025. [PMID: 40279512 DOI: 10.1021/acs.inorgchem.5c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The novel ligand H3PC3PA was synthesized from pyclen and methyl-6-(bromomethyl)picolinate with 82% overall yield, and its rare-earth complexes (La, Eu, Gd, Tb, Lu, Y) were isolated and characterized by HR-MS and analytical HPLC. Solution 1H and 13C NMR studies of the diamagnetic [Lu(PC3PA)] and [Y(PC3PA)] chelates evidenced non-coordination of the picolinate moiety at the N6 position to the metal. The 1H NMR spectrum of [Lu(PC3PA)] showed diastereotopic CH2 signals corresponding to a single, rigid isomer in solution, while [Y(PC3PA)] displayed sharp signals at higher temperatures, and diffusion-ordered NMR spectroscopy (DOSY) confirmed a single monomer species. [Eu(PC3PA)] and [Tb(PC3PA)] in water showed broad absorption bands at 269 nm due to the picolinate chromophore. [Eu(PC3PA)] displays red emission with a splitting of the 7FJ manifold characteristic of a low-symmetry coordination environment, while [Tb(PC3PA)] shows typical 5D4-7FJ transitions of Tb3+. Emission lifetimes confirmed monohydration of both complexes, in accordance with a non-coordinating picolinate pendant. The relaxivity of [Gd(PC3PA)], r1p = 3.97 mM-1 s-1 (20 MHz, 298 K), is comparable to that of commercial MRI contrast agents. The dissociation half-life of [Gd(PC3PA)] (22 min at pH 1, 25 °C) is short in comparison to that of analogous complexes, evidencing that the non-coordinating picolinate accelerates proton-assisted dissociation.
Collapse
Affiliation(s)
- Loëza Collobert
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Lucile Bridou
- CNRS, ENS de Lyon, LCH UMR 5182, 69342 Lyon, Cedex 07, France
| | - Zoltán Garda
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Université d'Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Olivier Maury
- CNRS, ENS de Lyon, LCH UMR 5182, 69342 Lyon, Cedex 07, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Université d'Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| |
Collapse
|
2
|
Hamon N, Godec L, Sanchez S, Beyler M, Charbonnière LJ, Tripier R. Upconversion Luminescence with Bis-pyclen Yb(III) Chelates: Crown vs. Linear Polyether Linkers in Discrete Heteropolynuclear Architectures. Angew Chem Int Ed Engl 2025; 64:e202414608. [PMID: 39603989 DOI: 10.1002/anie.202414608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Ligands combining two lateral bis-pyridyl-phosphonated-pyclens were synthesized, using a flexible linear pegylated linker (L2) or a bulkier K22 crown-ether (L3). A functionalized pyridyl-phosphonated-pyclen (L1) was also prepared as a mononuclear analogue. Coordination behavior of lanthanide cations was studied via NMR titration with Lu for L1, and UV/Vis and luminescence spectroscopy with Yb for L2/L3. Strong coordination of two Yb atoms enabled isolation and spectroscopic characterization of dinuclear complexes in H2O and D2O. Excited state lifetime analysis at 980 nm revealed strong protection of Yb cations, with no coordinated water molecule. Upon titration of the isolated dinuclear Yb complexes with Tb cations, cooperative upconversion (UC) sensitization of Tb in the visible was observed upon excitation of Yb at 980 nm in D2O. In the absence of Tb, the Yb complexes also exhibited cooperative luminescence with a weak emission band around 500 nm upon NIR Yb excitation. Efficient UC with Tb was only observed after thermal treatment, suggesting a slow kinetic of formation of the UC species. [Yb2TbL3] showed weak Tb centered UC emission, while the dinuclear complex of L2 displayed more intense UC emission up to two equivalents of Tb, forming [(Yb2L2)Tbx] (x=1-2), with the tetranuclear heterometallic complex being the most intense emitter. Log-Log plot analysis confirmed the two-photon nature of the UC process.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521-, Laboratoire CEMCA, F 29200, Brest, France
| | - Léna Godec
- Equipe de Synthèse pour l'Analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Samuel Sanchez
- Equipe de Synthèse pour l'Analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521-, Laboratoire CEMCA, F 29200, Brest, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'Analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521-, Laboratoire CEMCA, F 29200, Brest, France
| |
Collapse
|
3
|
Jian Y, Mo G, Xu W, Liu Y, Zhang Z, Ding Y, Gao R, Xu J, Zhu J, Shu K, Yan Z, Carniato F, Platas-Iglesias C, Ye F, Botta M, Dai L. Chiral Pyclen-Based Heptadentate Chelates as Highly Stable MRI Contrast Agents. Inorg Chem 2024; 63:8462-8475. [PMID: 38642052 DOI: 10.1021/acs.inorgchem.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.
Collapse
Affiliation(s)
- Yong Jian
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Gengshen Mo
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Weiyuan Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, People's Republic of China 637000
| | - Zhichao Zhang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Yinghui Ding
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Ruonan Gao
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Jiao Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, People's Republic of China 637000
| | - Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325027
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325027
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, Italy 15121
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña, Spain 15008
| | - Fangfu Ye
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, Italy 15121
| | - Lixiong Dai
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China 325035
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People's Republic of China 325000
| |
Collapse
|
4
|
Nizou G, Garda Z, Molnár E, Esteban-Gómez D, Le Fur M, Fougère O, Rousseaux O, Platas-Iglesias C, Tripier R, Tircsó G, Beyler M. Exploring the Limits of Ligand Rigidification in Transition Metal Complexes with Mono- N-Functionalized Pyclen Derivatives. Inorg Chem 2024; 63:3931-3947. [PMID: 38348851 DOI: 10.1021/acs.inorgchem.3c04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We report the synthesis of a new family of side-bridged pyclen ligands. The incorporation of an ethylene bridge between two adjacent nitrogen atoms was reached from the pyclen-oxalate precursor described previously. Three new side-bridged pyclen macrocycles, Hsb-3-pc1a, sb-3-pc1py, and Hsb-3-pc1pa, were obtained with the aim to assess their coordination properties toward Cu2+ and Zn2+ ions. We also prepared their nonreinforced analogues H3-pc1a, 3-pc1py, and H3-pc1pa as comparative benchmarks. The two series of ligands were characterized and their coordination properties were investigated in detail. The Zn2+ and Cu2+ complexes with the nonside-bridged series H3-pc1a, 3-pc1py, and H3-pc1pa were successfully isolated and their structures were assessed by X-ray diffraction studies. In the case of the side-bridged family, the synthesis of the complexes was far more difficult and, in some cases, unsuccessful. The results of our studies demonstrate that this difficulty is related to the extreme stiffening and basicity of such side-bridged pyclens.
Collapse
Affiliation(s)
- Gwladys Nizou
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Mariane Le Fur
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Olivier Fougère
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Olivier Rousseaux
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
5
|
Bunda S, Lihi N, Szaniszló Z, Esteban-Gómez D, Platas-Iglesias C, Kéri M, Papp G, Kálmán FK. Bipyridil-based chelators for Gd(III) complexation: kinetic, structural and relaxation properties. Dalton Trans 2023; 52:17030-17040. [PMID: 37937450 DOI: 10.1039/d3dt02806b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In the last 20 years, research in the field of MRI (magnetic resonance imaging) contrast agents (CAs) has been intensified due to the emergence of a disease called nephrogenic systemic fibrosis (NSF). NSF has been linked to the in vivo dissociation of certain Gd(III)-based compounds applied in MRI as CAs. To prevent the dechelation of the probes after intravenous injection, the improvement of their in vivo stability is highly desired. The inertness of the Gd(III) chelates can be increased through the rigidification of the ligand structure. One of the potential ligands is (2,2',2'',2'''-(([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetraacetic acid) (H4DIPTA), which has been successfully used as a fluorescent probe for lanthanides; however, it has never been considered as a potential chelator for Gd(III) ions. In this paper, we report the thermodynamic, kinetic and structural features of the complex formed between Gd(III) and DIPTA. Since the solubility of the [Gd(DIPTA)]- chelate is very low under acidic conditions, hampering its thermodynamic characterization, we can only assume that its stability is close to that determined for the structural analogue [Gd(FENTA)]- (H4FENTA: (1,10-phenanthroline-2,9-diyl)bis(methyliminodiacetic acid)), which is similar to that determined for the agent [Gd(DTPA)]2- routinely used in clinical practice. Unfortunately, the inertness of [Gd(DIPTA)]- is significantly lower (t1/2 = 1.34 h) than that observed for [Gd(EGTA)]- and [Gd(DTPA)]2- as a result of its spontaneous dissociation pathway during dechelation. The relaxivity values of [Gd(DIPTA)]- are comparable with those of [Gd(FENTA)]- and somewhat higher than the values characterizing [Gd(DTPA)]2-. Luminescence lifetime measurements indicate the presence of one water molecule (q = 1) in the inner sphere of the complex with a relatively high water exchange rate (k298ex = 43(5) × 106 s-1). DFT calculations suggest a rigid distorted tricapped trigonal prismatic polyhedron for the Gd(III) complex. On the basis of these results, we can conclude that the bipyridine backbone is not favourable with respect to the inertness of the chelate.
Collapse
Affiliation(s)
- Szilvia Bunda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Norbert Lihi
- HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsófia Szaniszló
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Mónika Kéri
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gábor Papp
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
6
|
Hamon N, Godec L, Jourdain E, Lucio-Martínez F, Platas-Iglesias C, Beyler M, Charbonnière LJ, Tripier R. Synthesis and Photophysical Properties of Lanthanide Pyridinylphosphonic Tacn and Pyclen Derivatives: From Mononuclear Complexes to Supramolecular Heteronuclear Assemblies. Inorg Chem 2023; 62:18940-18954. [PMID: 37935007 DOI: 10.1021/acs.inorgchem.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Léna Godec
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Elsa Jourdain
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
7
|
Storm Thomsen M, Andersen HOB, Sørensen TJ. Long story short: donor set symmetry in [Eu(DOTA)(H 2O)] - crystals determines the electronic structure. Dalton Trans 2022; 51:14118-14124. [PMID: 36043508 DOI: 10.1039/d2dt02172b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid DOTA have been studied in great detail due to their use as MRI contrast agents. Since the first report from Desreux in 1980, the Ln[DOTA]- complexes of gadolinium(III) in particular have been thoroughly investigated. The forms of the nine-coordinated [Ln(DOTA)(H2O)]- complexes are well known, and the ligand backbone has been used extensively to create functional MRI contrast agents, luminescent probes, and as a model system for studying the properties of lanthanide(III) ions. In solution, the photophysical properties have been mapped, but as the structures are not known, direct structure-property relationships have not been created. Here, the electronic properties of two Eu[DOTA] compounds (1 and 2) and a Eu[DOTA]-like compound (3) were studied using single-crystal luminescence spectroscopy. The donor set in the three compounds is identical (4N 4O 1O), and using the symmetry deviation value σideal it was shown that the coordination geometry is close to identical. Nevertheless, the electronic properties evaluated using the luminescence spectrum were found to differ significantly between the three compounds. The magnitude of the crystal field splitting was found not to scale with the symmetry of the coordination geometry. It was concluded that the donor set dictates the splitting, yet the structure-property relationships governing the electronic properties of europium(III) ions still elude us.
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | - Helene Obel Bøch Andersen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Váradi B, Lihi N, Bunda S, Nagy A, Simon G, Kéri M, Papp G, Tircsó G, Esteban-Gómez D, Platas-Iglesias C, Kálmán FK. Physico-Chemical Characterization of a Highly Rigid Gd(III) Complex Formed with a Phenanthroline Derivative Ligand. Inorg Chem 2022; 61:13497-13509. [PMID: 35972786 DOI: 10.1021/acs.inorgchem.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of the nephrogenic systemic fibrosis (NSF) and its link with the in vivo dissociation of certain Gd(III)-based contrast agents (CAs) applied in the magnetic resonance imaging (MRI) induced a still growing research to replace the compromised agents with safer alternatives. In recent years, several ligands were designed to exploit the luminescence properties of the lanthanides, containing structurally constrained aromatic moieties, which may form rigid Gd(III) complexes. One of these ligands is (1,10-phenanthroline-2,9-diyl)bis(methyliminodiacetic acid) (H4FENTA) designed and synthesized to sensitize Eu(III) and Tb(III) luminescence. Our results show that the conditional stability of the [Gd(FENTA)]- chelate calculated for physiological pH (pGd = 19.7) is similar to those determined for [Gd(DTPA)]2- (pGd = 19.4) and [Gd(DOTA)]- (pGd = 20.1), routinely used in the clinical practice. The [Gd(FENTA)]- complex is remarkably inert with respect to its dissociation (t1/2 = 872 days at pH = 7 and 25 °C); furthermore, its relaxivity values determined at different field strengths and temperatures (e.g., r1p = 4.3 mM-1s-1at 60 MHz and 37 °C) are ca. one unit higher than those of [Gd(DTPA)]2- (r1p = 3.4 mM-1 s-1) and [Gd(DOTA)]- (r1p = 3.1 mM-1 s-1) under the same conditions. Moreover, significant improvement on the relaxivity was observed in the presence of serum proteins (r1p = 6.9 mM-1 s-1 at 60 MHz and 37 °C). The luminescence lifetimes recorded in H2O and D2O solutions indicate the presence of a water molecule (q = 1) in the inner sphere of the complex directly coordinated to the metal ion, possessing a relatively high water exchange rate (kex298 = 29(2) × 106 s-1). The acceleration of the water exchange can be explained by the steric compression around the water binding site due to the rigid structure of the complex, which was supported by DFT calculations. On the basis of these results, ligands containing a phenanthroline platform have great potential in the design of safer Gd(III) agents for MRI.
Collapse
Affiliation(s)
- Balázs Váradi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary.,Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Norbert Lihi
- ELKH-DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Szilvia Bunda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Antónia Nagy
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Gréta Simon
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Mónika Kéri
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Gábor Papp
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Univer-sidade da Coruña, A Coruña, Galicia 15071, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Univer-sidade da Coruña, A Coruña, Galicia 15071, Spain
| | - Ferenc K Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
9
|
Panza N, Tseberlidis G, Caselli A, Vicente R. Recent progresses in the chemistry of 12-membered pyridine-containing tetraazamacrocycles: From synthesis to catalysis. Dalton Trans 2022; 51:10635-10657. [DOI: 10.1039/d2dt00597b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides an overview (non-comprehensive) on recent developments regarding pyridine-containing 12-membered tetraazamacrocycles with pyclen or Py2N2 backbones and their metal complexes from 2017 to the present. Firstly, the synthesis...
Collapse
|
10
|
Kálmán FK, Nagy V, Uzal-Varela R, Pérez-Lourido P, Esteban-Gómez D, Garda Z, Pota K, Mezei R, Pallier A, Tóth É, Platas-Iglesias C, Tircsó G. Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules 2021; 26:molecules26061524. [PMID: 33802241 PMCID: PMC7998310 DOI: 10.3390/molecules26061524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022] Open
Abstract
We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2−) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X−ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2− ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton− and metal−assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2− is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.
Collapse
Affiliation(s)
- Ferenc K. Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary; (F.K.K.); (V.N.); (Z.G.); (R.M.)
| | - Viktória Nagy
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary; (F.K.K.); (V.N.); (Z.G.); (R.M.)
| | - Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; (R.U.-V.); (D.E.-G.)
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain;
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; (R.U.-V.); (D.E.-G.)
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary; (F.K.K.); (V.N.); (Z.G.); (R.M.)
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 West Bowie Street, Fort Worth, TX 76109, USA;
| | - Roland Mezei
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary; (F.K.K.); (V.N.); (Z.G.); (R.M.)
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Rue Charles-Sadron, CEDEX 2, 45071 Orléans, France;
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Rue Charles-Sadron, CEDEX 2, 45071 Orléans, France;
- Correspondence: (É.T.); (C.P.-I.); (G.T.); Tel.: +33-2-38-25-76-25 (É.T.); +34-881-5597 (C.P.-I.); +36-52-512-900 (ext. 22374) (G.T.)
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; (R.U.-V.); (D.E.-G.)
- Correspondence: (É.T.); (C.P.-I.); (G.T.); Tel.: +33-2-38-25-76-25 (É.T.); +34-881-5597 (C.P.-I.); +36-52-512-900 (ext. 22374) (G.T.)
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary; (F.K.K.); (V.N.); (Z.G.); (R.M.)
- Correspondence: (É.T.); (C.P.-I.); (G.T.); Tel.: +33-2-38-25-76-25 (É.T.); +34-881-5597 (C.P.-I.); +36-52-512-900 (ext. 22374) (G.T.)
| |
Collapse
|