1
|
Zhao H, Guo S, Jiang J, Chen X, Wang Y, He X, Chen M, Wang W, Wang S, Wang M, Sun T, Cui H, Wang S, Zhang M. Direct Ethylene Purification from a Four-Component Gas Mixture by a Microporous MOF with Aromatic Pore Surface and Carboxylates. Inorg Chem 2024; 63:12691-12696. [PMID: 38949263 DOI: 10.1021/acs.inorgchem.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The single-step purification of ethylene (C2H4) from a mixture of carbon dioxide (CO2), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) was achieved through MOF Compound-1, where the aromatic pore surface and carboxylates selectively recognized C2H6 and CO2, respectively, resulting in a reversal of the adsorption orders for both gases (C2H6 > C2H4 and CO2 > C2H4). Breakthrough testing verified that the C2H4 purification ability could be enhanced 2.6 times after adding impure CO2. Grand Canonical Monte Carlo (GCMC) simulations demonstrate that there are interactions between CO2 and C2H6 molecules as well as between CO2 molecules themselves. These interactions contribute to the enhancement of the C2H4 purification ability upon the addition of CO2 and the increased adsorption of CO2.
Collapse
Affiliation(s)
- Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Suer Guo
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Xin Chen
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | - Wei Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Shangyu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | | |
Collapse
|
2
|
Sugamata K, Zhang Y, Amanokura N, Shirai A, Minoura M. Alkoxy-Functionalized Hydroxamate/Zinc Metal-Organic Frameworks and the Effects of Substituents and Acid Addition on Their Structures. Inorg Chem 2024; 63:2454-2459. [PMID: 38276883 DOI: 10.1021/acs.inorgchem.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single crystals of alkoxy-functionalized hydroxamate/zinc metal-organic frameworks (MOFs) were obtained by fixating the hydroxamate moiety via intramolecular hydrogen bonding. The resulting MOF structures depend on the steric demand of the alkoxy groups, whereby the incorporation of bulky isopropyl groups affords porous hydroxamate/zinc MOFs. The topological structures of the isopropyl-substituted MOFs could be controlled by adding acid.
Collapse
Affiliation(s)
- Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yanhua Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsuki Amanokura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Akihiro Shirai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
3
|
Zhang P, Ma S, Zhang Y, He C, Hu T. Enhancing CO 2/N 2 and CH 4/N 2 separation performance by salt-modified aluminum-based metal-organic frameworks. Dalton Trans 2024. [PMID: 38247311 DOI: 10.1039/d3dt03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The energy-saving separation of CO2/N2 and CH4/N2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)2, Zn(BF4)2 and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)2-), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)2, MOF-253@Zn(BF4)2 and MOF-253@ZnSiF6) for CO2 and CH4 were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol-1) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N2 (1/4) and CH4/N2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Sai Ma
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Yujuan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Chaohui He
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Tuoping Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| |
Collapse
|
4
|
Zhang M, Jiang J, Zhao H, Wang Y, He X, Chen M, Wang W, Wang S, Wang S, Wang M, Sun T, Qin G, Tang Y, Cui H. Flow Channel with Recognition Corners in a Stable La-MOF for One-Step Ethylene Production. Inorg Chem 2024; 63:1507-1512. [PMID: 38198122 DOI: 10.1021/acs.inorgchem.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Single-step ethylene (C2H4) production from acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) mixtures was realized via the strategy of a flow channel with recognition corners in MOF NTUniv-64. Both the uptake amounts and the enthalpy of adsorption (Qst) showed the same order of C2H2 > C2H6 > C2H4. Breakthrough testing also verified the above data and the C2H4 purification ability. Grand Canonical Monte Carlo (GCMC) simulations indicated that uneven corners could precisely detain C2H2 and C2H6, in which the C-H···π interaction distance between C2H2 (2.84 Å) and C2H6 (3.03 Å) and the framework was shorter than that of C2H4 (3.85 Å).
Collapse
Affiliation(s)
| | | | - Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | - Wei Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Shangyu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
5
|
Zhang M, Wang Y, He X, Chen M, Jiang J, Zhao H, Liu P, Dang R, Wang S, Wang M, Sun T, Qin G, Tang Y, Cui H. Fine Tuning Metal-Organic Frameworks with Halogen Functional Groups for Ethylene Purification. Inorg Chem 2024; 63:50-55. [PMID: 38150825 DOI: 10.1021/acs.inorgchem.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
One-step C2H4 purification from a mixture of C2H2/C2H4/C2H6 could be achieved by metal-organic framework (MOF) NTUniv-70 with an F-functional group. The selectivities of C2H4/C2H6 and C2H4/C2H2 of NTUnvi-70 based on ideal adsorbed solution theory were at least twice that of the original MOF platform, which was in line with the enthalpy of adsorption (Qst) and breakthrough testing. Grand canonical Monte Carlo simulations indicated that the C-H···F interactions played an important role in enhanced C2H4/C2H6 and C2H4/C2H2 adsorption selectivities.
Collapse
Affiliation(s)
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
6
|
Zhang M, He X, Chen M, Zhao H, Wang Y, Jiang J, Liu P, Dang R, Tang Y, Wang M, Sun T, Qin G, Wang S, Cui H. Expanding MOF with Unexpanded Channel via Ketone Decorated Ligand for Ethylene Purification and Stability Enhancement. Inorg Chem 2023. [PMID: 37988594 DOI: 10.1021/acs.inorgchem.3c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The concept of an expanding MOF with unexpanded channel size was realized in MOF NTUniv-61 by the utilization of a ketone-functional-group-decorated semirigid ligand and pillar-layer platform. After this unusual expansion, the preferential C2H6 adsorption was preserved via the unchanged pore size, and the functional group was inserted into the MOF. Interestingly, the C2H2 uptake ability, C2H4 selective adsorption ability, and structural stability were obviously enhanced due to the incorporation of the ketone functional group, which were further verified by isosteric heats of adsorption (Qst), GCMC modeling, and breakthrough experiments.
Collapse
Affiliation(s)
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
7
|
Zhang M, Chen M, Jiang J, He X, Zhao H, Wang Y, Liu P, Dang R, Wang S, Wang M, Sun T, Qin G, Tang Y, Cui H. Creating an Ethane Trap in a Ketone-Decorated MOF for One-Step Ethylene Separation from C2 Hydrocarbons. Inorg Chem 2023; 62:18814-18819. [PMID: 37947424 DOI: 10.1021/acs.inorgchem.3c03183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
One-step C2H4 purification from a mixture of C2H2/C2H4/C2H6 by physical adsorption separation was realized via creating an ethane trap in MOF NTUniv-63 by the utilization of a ketone-decorated semirigid ligand, which has further been verified by the breakthrough experiment, isosteric heats of adsorption (Qst), and Grand Canonical Monte Carlo (GCMC) modeling.
Collapse
Affiliation(s)
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
8
|
Zhang M, Zhao H, Wang Y, Jiang J, Chen M, He X, Liu P, Dang R, Cui H, Wang M, Sun T, Qin G, Tang Y, Wang S. Fine-Tuning MOFs with Amino Group for One-Step Ethylene Purification from the C2 Hydrocarbon Mixture. Inorg Chem 2023; 62:8428-8434. [PMID: 37200597 DOI: 10.1021/acs.inorgchem.3c01056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to the similar kinetic diameters of C2H2, C2H4, and C2H6, one-step purification of C2H4 from a ternary C2H2/C2H4/C2H6 mixture by adsorption separation is still a challenge. Based on a C2H6-trapping platform and crystal engineering strategy, the N atom and amino group were introduced into NTUniv-58 and NTUniv-59, respectively. Gas adsorption testing of NTUniv-58 showed that both the C2H2 and C2H4 uptake capacities and the C2H2/C2H4 separation ability were boosted compared with the original platform. However, the C2H4 uptake value exceeds the C2H6 adsorption data. For NTUniv-59, the C2H2 uptake at low pressure increased and the C2H4 uptake decreased; thus, the C2H2/C2H4 selectivity was enhanced and the one-step purification of C2H4 from a ternary C2H2/C2H4/C2H6 mixture was realized, which was supported by the enthalpy of adsorption (Qst) and breakthrough testing. Grand canonical monte carlo (GCMC) simulation indicated that the preference for C2H2 over C2H4 originates from multiple hydrogen-bonding interactions between amino groups and C2H2 molecules.
Collapse
Affiliation(s)
| | - Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
9
|
Wang L, He QQ, Gao Q, Xu H, Zheng TF, Zhu ZH, Peng Y, Chen JL, Liu SJ, Wen HR. Controllable Synthesis of Tb III Metal-Organic Frameworks with Reversible Luminescence Sensing for Benzaldehyde Vapor. Inorg Chem 2023; 62:3799-3807. [PMID: 36808965 DOI: 10.1021/acs.inorgchem.2c04053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Two novel lanthanide metal-organic frameworks (MOFs) with the formulas [Tb(bidc)(Hbidc)(H2O)]n (JXUST-20) and {[Tb3(bidc)4(HCOO)(DMF)]·solvents}n (JXUST-21) were synthesized based on 2,1,3-benzothiadiazole-4,7-dicarboxylic acid (H2BTDC) under solvothermal conditions. Interestingly, benzimidazole-4,7-dicarboxylic acid (H2bidc) was formed in situ using H2BTDC as the starting material. The self-assembly process of the targeted MOFs with different topological structures can be controlled by the solvents and concentration of the reactants. Luminescence experiments show that JXUST-20 and JXUST-21 exhibit strong yellow-green emission. JXUST-20 and JXUST-21 can selectively sense benzaldehyde (BzH) via a luminescence quenching effect with detection limits of 15.3 and 1.44 ppm, respectively. In order to expand the practical application of MOF materials, mixed-matrix membranes (MMMs) have been constructed by mixing targeted MOFs and poly(methyl methacrylate) in a N,N-dimethylformamide (DMF) solution, which can also be used for BzH vapor sensing. Therefore, the first case of MMMs derived from TbIII MOFs has been developed for the reversible detection of BzH vapor, providing a simple and efficient platform for the future detection of volatile organic compounds.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Qi-Qi He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Hui Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Zi-Hao Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
10
|
Lu X, Tang Y, Yang G, Wang YY. Porous functional metal–organic frameworks (MOFs) constructed from different N-heterocyclic carboxylic ligands for gas adsorption/separation. CrystEngComm 2023. [DOI: 10.1039/d2ce01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review mainly summarizes the recent progress of MOFs composed of N-heterocyclic carboxylate ligands in gas sorption/separation. This work may help to understand the relationship between the structures of MOFs and gas sorption/separation.
Collapse
Affiliation(s)
- Xiangmei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
11
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Zhang M, Liu P, Dang R, Cui H, Jiang G, Wang J, Wang M, Sun T, Wang M, Qin G, Wang S, Tang Y. Formation of a Polar Flow Channel with Embedded Gas Recognition Pockets in a Yttrium-Based MOF for Enhanced C 2H 2/C 2H 4 and CO 2 Selective Adsorptions. Inorg Chem 2022; 61:18653-18659. [DOI: 10.1021/acs.inorgchem.2c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guomin Jiang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Jin Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Minmin Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
13
|
Vapor sorption behavior in heptazine-based MOF featuring a brick-shaped framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Jabri AY, Mohajeri A. Photo-induced reversible nitric oxide capture by Fe-M(CO 2H) 4 (M = Co, Ni, Cu) as a building block of mixed-metal BTC-based MOFs. Phys Chem Chem Phys 2022; 24:22859-22870. [PMID: 36124552 DOI: 10.1039/d2cp02337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks incorporating mixed-metal sites (MM-MOFs) have emerged as promising candidates in the development of sensing platforms for the detection of paramagnetic species. In this context, the present study explores the photo-induced switching behavior of mixed-metal Fe-M (M = Co, Ni, Cu) formate (Fe-M(CO2H)4), as an experimentally feasible strategy for the reversible capture of nitric oxide (NO). Using Fe-M(CO2H)4 as a building block of synthesized MOFs based on BTC (benzene-1,3,5-tricarboxylic acid), molecular simulations of NO adsorption on Fe-M(CO2H)4 were conducted to provide a template for evaluating the behavior of BTC-based MOFs towards NO. Accordingly, the relationship between the magnetic properties and adsorption behaviors of Fe-M(CO2H)4 towards NO gas molecules was evaluated before and after photoexcitation. We show that the photo-induced effect on the magnetic properties of Fe-M(CO2H)4 changes the interaction strength between NO and the Fe-M(CO2H)4 systems. NO chemisorption over Fe-Ni(CO2H)4 indicates that nickel-doped Fe-BTC MOFs can be efficiently applied for capturing purposes. Moreover, our calculations show a switching behavior between physisorption and chemisorption of the NO molecules over Fe-Co(CO2H)4, occurring through magnetic modulation under UV-Vis irradiation. As far as we know, this is the first study that proposes light-controlled reversible NO capture using MOFs. The present study provides a promising platform for reversible NO capture using MM-MOF-incorporated BTC building blocks.
Collapse
Affiliation(s)
- Azadeh Yeganeh Jabri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran.
| |
Collapse
|
15
|
Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sinchow M, Konno T, Rujiwatra A. Reversible Structural Transformation and Catalytic Potential of Lanthanide-Azobenzenetetracarboxylates. Inorg Chem 2022; 61:10383-10392. [PMID: 35763789 DOI: 10.1021/acs.inorgchem.2c00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the catalytic potential of lanthanide coordination polymers of 3,3',5,5'-azobenzenetetracarboxylic acid (H4abtc), two new isostructural [Ln2III(Habtc)2(DMSO)4]·DMSO·H2O (LnIII = SmIII (I), EuIII = (II), DMSO = dimethyl sulfoxide) were synthesized and characterized. Their single-crystal structures were elucidated and described. Structural transformations of II in the solid state prompted by ligand substitution and thermal treatment were studied, from which genuine reversible transformation of II to [EuIII(Habtc)(H2O)4]·3H2O (II') and [EuIII(Habtc)(H2O)2]·2H2O (II″) was revealed. This illustrates the rare case of reversible transformation in lanthanide coordination polymers. The transformation between II' and II″ was also investigated. Structural transformations among these frameworks are discussed with regard to the coordination environment of EuIII, coordination modes of Habtc3-, and similarities and disparities in framework architecture and registration. In addition, the catalytic performance of II with and without the prior activation in CO2 cycloaddition reaction with epichlorohydrin was studied in comparison with II' and II″. The excellent performance of II disregarding the activation process has been demonstrated with the maximum turnover number and turnover frequency of 7682 and 1921 h-1, respectively, for the activated II and 7142 and 1786 h-1, respectively, for the nonactivated II. The maintenance of the catalytic efficiency over 10 cycles of the catalysis and the regeneration process is illustrated and discussed with respect to structural transformation.
Collapse
Affiliation(s)
- Malee Sinchow
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Qin LZ, Xiong XH, Wang SH, Meng LL, Yan TA, Chen J, Zhu NX, Liu DH, Wei ZW. A Series of Functionalized Zirconium Metal-Organic Cages for Efficient CO 2/N 2 Separation. Inorg Chem 2021; 60:17440-17444. [PMID: 34756021 DOI: 10.1021/acs.inorgchem.1c02948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.
Collapse
Affiliation(s)
- Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shi-Han Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tong-An Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Da-Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Song FQ, Cheng H, Zhao NN, Song XQ, Wang L. Anion-Dependent Structure and Luminescence Diversity in Zn II-Ln III Heterometallic Architectures Supported by a Salicylamide-Imine Ligand. Inorg Chem 2021; 60:17051-17062. [PMID: 34694111 DOI: 10.1021/acs.inorgchem.1c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To advance the structural development and fully explore the application potential, it is highly desirable but challenging to elucidate the relationship between the structures and properties of ZnII-LnIII heterometallic species. Herein, three types of ZnII-LnIII heterometallic compounds (LnIII = GdIII, TbIII) formulated as [Zn16Ln4L12(μ3-O)4(NO3)12]·8CH3CN (ZnLn-1), [Zn2Ln2L2(NO3)6(H2O)2]·3CH3CN (ZnLn-2), and [Zn4Ln2L8(OAc)12]·xCH3CN (ZnLn-3: for Ln = Gd, x = 5; for Ln = Tb, x = 4) were dictated by common inorganic anions, NO3- and OAc-, with the aid of the multidentate ligand H2L with propane as the central skeleton and 3-methoxysalicylamide and 3-methoxysalicylaldimine as terminal groups. ZnLn-1 features cubic cages with four {Zn4L3} tetrahedral subunits and four Ln3+ centers positioned at the eight vertices alternately when NO3- was introduced into the reaction system exclusively. An attempt to replace NO3- in ZnLn-1 with OAc- partially led to the formation of {Zn2Ln2L2} heterometallic wheels. Meanwhile, ZnLn-3 featuring double-hairpin-like {Zn4Ln2L4} hemicycles that are orthogonal to each other assisted by intermolecular hydrogen bonds was constructed when NO3- in ZnLn-1 was completely replaced by OAc-. Their structural integrity in solution were ascertained by both emission and 1H NMR spectroscopy. Ascribed to the different Zn2+-containing antenna, ZnTb-2 possesses a relatively strong emission characteristic of Tb3+; ZnTb-1 has moderate Tb3+ luminescence, yet an absence of Tb3+ emission is found in ZnTb-3. Such an emission difference could be mainly attributed to the antenna effect directed by distinct structural characteristics induced by anions. The anion-dictated self-assembly strategy presented herein not only offers a facile approach to regulate the coordination mode of H2L to such an extent to obtain diverse structures of ZnII-LnIII heterometallic species but also provides an understanding of how common inorganic anions tune coordination-driven self-assemblies as well as the subsequent luminescence properties.
Collapse
Affiliation(s)
- Fu-Qiang Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Hao Cheng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Na-Na Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
19
|
Zhou P, Wang X, Yue L, Fan L, He Y. A Microporous MOF Constructed by Cross-Linking Helical Chains for Efficient Purification of Natural Gas and Ethylene. Inorg Chem 2021; 60:14969-14977. [PMID: 34533927 DOI: 10.1021/acs.inorgchem.1c02363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural gas (NG) and ethylene (C2H4) are two raw materials of significant value for manufacturing versatile fine chemicals and/or polymers, and thus the development of solid adsorbing agents such as metal-organic frameworks (MOFs) applied to their depuration is very crucial but remains highly challenging. In this research, we designed and synthesized a ligand containing mixed N and O coordination donors, which was solvothermally assembled with Cu(II) ions to generate a microporous MOF. X-ray crystallography revealed that the title MOF incorporates one-dimensional (1D) homochiral helical chains that are datively cross-linked to form open channels in the three-periodic coordination framework. Furthermore, the behaviors of C1-C2 hydrocarbons and carbon dioxide (CO2) adsorbed in the title MOF were systematically investigated, revealing its promising potential for the purification of both NG and C2H4. At 109 kPa and 298 K, the C2/methane (CH4), CO2/CH4, and acetylene (C2H2)/C2H4 adsorption selectivities are impressive, reaching as high as 62.9, 28.6, and 3.5, respectively. This work represents a unique MOF based on cross-linked homochiral helical chains exhibiting dual-function separation potentials for NG and C2H4 purifications.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
20
|
Bicalho HA, Donnarumma PR, Quezada-Novoa V, Titi HM, Howarth AJ. Remodelling a shp: Transmetalation in a Rare-Earth Cluster-Based Metal-Organic Framework. Inorg Chem 2021; 60:11795-11802. [PMID: 34314164 DOI: 10.1021/acs.inorgchem.1c01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Postsynthetic modification of metal-organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized de novo. In this work, the rare-earth (RE) cluster-based MOF Y-CU-10 with shp topology was modified through transmetalation using a series of RE ions, including La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal exchange higher than 70% was observed, with reproducible results. All transmetalated materials were fully characterized and compared to the parent MOF Y-CU-10 with regard to crystallinity, surface area, and morphology. Additionally, single-crystal X-ray diffraction measurements were performed to provide further evidence of transmetalation occurring in the nonanuclear cluster nodes of the MOF.
Collapse
Affiliation(s)
- Hudson A Bicalho
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - P Rafael Donnarumma
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - Victor Quezada-Novoa
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|