1
|
Pavlidis S, Alasadi J, Opis-Basilio A, Abbenseth J. Two-fold proton coupled electron transfer of a Ta(V) aniline complex mediated by a redox active NNN pincer ligand. Dalton Trans 2025; 54:2421-2429. [PMID: 39717910 DOI: 10.1039/d4dt03281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We report the proton-coupled electron transfer (PCET) reactivity of an octahedral Ta(V) aniline complex supported by an acridane-derived redox active NNN pincer ligand. The reversible binding of aniline to a Ta(V) dichloride induces significant coordination-induced bond weakening (CIBW) of the aniline N-H bonds. This enables a rare two-fold hydrogen atom abstraction, resulting in a terminal imido complex and a two-electron oxidation of the NNN pincer ligand, all while maintaining the metal's oxidation state. The bond dissociation free energies (BDFEs) of the aniline and a transient radical amido complex are estimated through stoichiometric reactions with different hydrogen atom abstractors and donors, further supported by density functional theory calculations.
Collapse
Affiliation(s)
- Sotirios Pavlidis
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Jasmin Alasadi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Amanda Opis-Basilio
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Josh Abbenseth
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
2
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024; 15:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
3
|
Bruch QJ, Tanushi A, Müller P, Radosevich AT. Metal-Ligand Role Reversal: Hydride-Transfer Catalysis by a Functional Phosphorus Ligand with a Spectator Metal. J Am Chem Soc 2022; 144:21443-21447. [PMID: 36378626 PMCID: PMC9712262 DOI: 10.1021/jacs.2c10200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and an inert metal fragment ([Ru] = (Me5C5)Ru), reacts with NaBH4 to give a metallohydridophosphorane (1H·[Ru]) by P-H bond formation. Complex 1H·[Ru] is revealed to be a potent hydride donor (ΔG°H-,exp < 41 kcal/mol, ΔG°H-,calc = 38 ± 2 kcal/mol in MeCN). Taken together, the reactivity of the 1·[Ru]+/1H·[Ru] pair comprises a catalytic couple, enabling catalytic hydrodechlorination in which phosphorus is the sole reactive site of hydride transfer.
Collapse
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Akira Tanushi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst‐Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium‐Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Kim A. Eisenlohr
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Goethe-Universität Frankfurt Institut für Anorganische und Analytische Chemie Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
5
|
Abstract
Realizing cooperativity between ligands and metal centers in the transfer of proton and electron equivalents has the potential to facilitate faster, selective, and novel transformations. Recent advances in the synthesis and application of ligands with these design features illustrate the value of this biomimetic strategy in synthetic chemistry.
Collapse
|
6
|
Alig L, Eisenlohr KA, Zelenkova Y, Rosendahl S, Herbst-Irmer R, Demeshko S, Holthausen MC, Schneider S. Rhenium-Mediated Conversion of Dinitrogen and Nitric Oxide to Nitrous Oxide. Angew Chem Int Ed Engl 2021; 61:e202113340. [PMID: 34714956 PMCID: PMC9299976 DOI: 10.1002/anie.202113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Reductive splitting of N2 is an attractive strategy towards nitrogen fixation beyond ammonia at ambient conditions. However, the resulting nitride complexes often suffer from thermodynamic overstabilization hampering functionalization. Furthermore, oxidative nitrogen atom transfer of N2 derived nitrides remains unknown. We here report a ReIV pincer platform that mediates N2 splitting upon chemical reduction or electrolysis with unprecedented yield. The N2 derived ReV nitrides undergo facile nitrogen atom transfer to nitric oxide, giving nitrous oxide nearly quantitatively. Experimental and computational results indicate that outer‐sphere ReN/NO radical coupling is facilitated by the activation of the nitride via initial coordination of NO.
Collapse
Affiliation(s)
- Lukas Alig
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Kim A Eisenlohr
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Yaroslava Zelenkova
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Sven Rosendahl
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Max C Holthausen
- Goethe-Universität Frankfurt, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Hua SA, Paul LA, Oelschlegel M, Dechert S, Meyer F, Siewert I. A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. J Am Chem Soc 2021; 143:6238-6247. [PMID: 33861085 DOI: 10.1021/jacs.1c01763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.
Collapse
Affiliation(s)
- Shao-An Hua
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|