1
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2025; 29:2017-2031. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
2
|
Xu Y, Li P, Liu Y, Man Y, Wang C, Li J, Sun G, Ju Q, Fang Z. Constructing Synergistically Catalytic Lewis Acidic-Basic Sites for Boosting Reactivity of a Flexible Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10710-10721. [PMID: 39912754 DOI: 10.1021/acsami.4c20744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Targeted construction of Lewis acidic-basic sites in the skeleton of coordination polymers (CPs) can greatly enhance their catalytic efficiency due to the synergistic effect of acidic and basic sites. However, research on validating the coexistence of Lewis acidic-basic sites for boosting the catalytic activity of CPs toward the Knoevenagel condensation (KC) reaction, widely applied in the synthesis of high-added-value intermediates and products under mild conditions, is missing so far. Based on the above consideration, we have artificially constructed Lewis acidic-basic sites and introduced vacancy in the framework of a new flexible cerium CP {Ce-CP: [Ce3+Ce4+(obb2-)3(OH)(H2O)(DMF)]∞} (DMF: N,N-dimethylformamide) via applying the functional ligand 4,4'-oxidibenzoate (obb2-) with the bridging O atom as the Lewis basic site and removing the coordinating solvent molecules and counterions to form cerium coordination unsaturated sites (Ce-CUSs) as Lewis acidic sites. Interestingly, Ce-CP exhibits reversible structural transformation associated with a desolvation and resolvation process. The Lewis acidic and basic sites in the resulting Ce-CP (LAB-Ce-CP) have been confirmed by CO2 temperature-programmed desorption (TPD) and NH3 combined with pyrrole-TPD (NH3-Py-TPD) for the first time. Benefiting from the coexistence of Lewis acidic and basic sites as well as the flexibility of the framework, LAB-Ce-CP shows high activity and excellent recyclability toward KC reactions. Moreover, we have found that (1) the activation temperature of Ce-CP plays a critical role in its porosity, exposure of Lewis acidic-basic sites, and thus reactivity; (2) the stronger electron-withdrawing ability of the substituent groups in benzaldehyde derivatives and the smaller size of the reactants lead to the higher yield of product and turnover number (TON) value when the disparity of electron-withdrawing and electron-donating abilities between the substituent groups in benzaldehyde derivatives is not significant. Hence, this work has exploited a new strategy for designing excellent heterogeneous catalysts with constructed active sites of synergistic catalysis capability toward KC reactions.
Collapse
Affiliation(s)
- Yixiu Xu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Peiyuan Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuanyuan Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yi Man
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd, Beijing 100013, China
| | - Chan Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Jia Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Gengzhi Sun
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Qiang Ju
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Zhenlan Fang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
3
|
Manna K, Boruah R, Natarajan S. Zn, Cd and Cu Coordination Polymers for Metronidazole Sensing and for Ullmann and Chan-Lam Coupling Reactions. Chem Asian J 2024; 19:e202400501. [PMID: 39034642 DOI: 10.1002/asia.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Five compounds, [Zn2(bpe)(BPTA)2(H2O)2] ⋅ 2H2O (1); [Zn(bpe)(BPTA)] (2); [Cd(bpe)(BPTA)H2O] (3); [Cd(BPTA) (bpmh)] ⋅ 2H2O (4); and Cu2(BPTA)2(bpmh)3(H2O)2] ⋅ 2H2O (5) were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2, 5 BPTA) as the primary ligand and 1,2-di(pyridin-4-yl)ethane (4, 4' bpe) (1-3) and 1,2-bis(pyridin-3-ylmethylene)hydrazine (bpmh) (4-5) as the secondary ligands. Single crystal studies indicated that the compounds 1, 3 and 5 have two-dimensional layer structures and compounds 2 and 4 three-dimensional structures. The luminescence behaviour of the compounds 2 and 3 were explored for the sensing of metronidazole in aqueous medium. The studies indicated that the compounds can detect metronidazole in ppm level both in solution as well as simple paper strips. The Cu compound 5 was found to lose the coordinated water molecule at 100 °C without any structural change. The coordinatively unsaturated Cu-centre were examined towards the Lewis acidic character by carrying out the Ullmann type C-C homocoupling reaction of the aromatic halide compounds. The compounds, 4 and 5, also have the Lewis basic functionality arising out the =N-N=, aza groups. The bifunctional nature of the coordination polymers (CP) was explored towards the Chan-Lam coupling reaction between phenyl boronic acid and aniline derivatives in the ethanol medium. In both the catalytic reactions, good yields and recyclability were observed. The present studies illustrated the rich diversity that the transition metal containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishika Boruah
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Srinivasan Natarajan
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Zhao B, Li C, Hu T, Gao Y, Fan L, Zhang X. Robust {Pb 10}-Cluster-Based Metal-Organic Framework for Capturing and Converting CO 2 into Cyclic Carbonates under Mild Conditions. Inorg Chem 2024; 63:14183-14192. [PMID: 39010257 DOI: 10.1021/acs.inorgchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing a highly active catalyst that can efficiently capture and convert carbon dioxide (CO2) into high-value-added energy materials remains a severe challenge, which inspires us to explore effective metal-organic frameworks (MOFs) with high chemical stability and high-density active sites. Herein, we report a robust 3D lead(II)-organic framework of {(Me2NH2)2[Pb5(PTTPA)2(H2O)3]·2DMF·3H2O}n (NUC-111) with unreported [Pb10(COO)22(H2O)6] clusters (abbreviated as {Pb10}) as nodes (H6PTTPA = 4,4',4″-(pyridine-2,4,6-triyl)triisophthalic acid). After thermal activation, NUC-111a is functionalized by the multifarious symbiotic acid-base active sites of open Pb2+ sites and uncoordinated pyridine groups on the inner surface of the void volume. Gas adsorption tests confirm that NUC-111a displays a higher separation performance for mixed gases of f CO2 and CH4 with the selectivity of CO2/CH4 at 273 K and 101 kPa being 31 (1:99, v/v), 23 (15:85, v/v), and 8 (50:50, v/v), respectively. When the temperature rises to 298 K, the selectivity of CO2/CH4 at 101 kPa is 26 (1:99, v/v), 22 (15:85, v/v), and 11 (50:50, v/v). Moreover, activated NUC-111a exhibited excellent catalytic performance, stability, and recyclability for the cycloaddition of CO2 with epoxides under mild conditions. Hence, this work provides valuable insight into designing MOFs with multifunctionality for CO2 capture, separation, and conversion.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, P. R. China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
5
|
Jin S, Fu Y, Jie K, Dai H, Luo YJ, Ye L, Zhou C, Xu W. High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. Chemistry 2024; 30:e202400756. [PMID: 38727558 DOI: 10.1002/chem.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/19/2024]
Abstract
Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.
Collapse
Affiliation(s)
- Siyang Jin
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023
| | - Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yun Jie Luo
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| |
Collapse
|
6
|
Zhang X, Wang X, Li C, Hu T, Fan L. Nanoporous {Co 3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO 2 and Knoevenagel condensation. J Colloid Interface Sci 2023; 656:127-136. [PMID: 37988780 DOI: 10.1016/j.jcis.2023.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enhancing the catalysis of metal-organic frameworks (MOFs) by regulating inherent Lewis acid-base sites to realize the efficient seperation and chemical fixation of inert carbon dioxide (CO2) is crucial but challenging. Herein, the solvothermal self-assembly of Co2+, 5'-(4-carboxy-2-nitrophenyl)-2,2',2'',4',6'-pentanitro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H3TNBTB) and 4'-phenyl-4,2':6',4''-terpyridine (PTP) generated a highly robust cobalt-organic framework of {[Co3(TNBTB)2(PTP)]·7DMF·6H2O}n (NUC-82). In NUC-82, the tri-core clusters of {Co3} with linear shape are bridged by TNBTB3- to form two-dimensional structure in ac plane, which is further linked by PTP to generate a three-dimensional framework with two kinds of solvent-accessible channels: rhombic-like (ca. 11.57 × 10.76 Å) along a axis and rectangular-like (ca. 7.32 × 11.56 Å) along b axis. Furthermore, it is worth emphasizing that the confined pore environments are characterized by plentiful Lewis acid-base sites of tricobalt clusters, grafted nitro groups and free pyridinyl, high specific surface area and solvent-free nano-caged windows. Activated NUC-82a owns the ultra-high ethylene (C2H2) separation performance over the mixture of C2H2/CH4 and CO2/CH4 with the selectivity of 223.1 and 44.7. Thanks to the great Lewis-acid sites as well as the large pore volume, activated NUC-82a displays the high catalytic performace on the cycloaddition of CO2 with epoxides under wield condtions such as amibient pressure. Furthermore, because of the rich Lewis base sites, NUC-82a can efficiently catalyze Knoevenagel condensation of aldehydes and malononitrile. In the above organic reactions, NUC-82a not only shows the high catalytic activity, but also exhibits the high selectivity, satifactory recyclability and easy-to-separate heterogeneity, confirming that NUC-82a is a promising catalyst. Hence, this work provides in-depth insight into the construction of multifunctional MOFs by modifying the traditional ligands with as many Lewis acid-base active sites as possible.
Collapse
Affiliation(s)
- Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Chong Li
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Liming Fan
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
7
|
Xu Z, Zhao YY, Chen L, Zhu CY, Li P, Gao W, Li JY, Zhang XM. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO 2 with epoxides and Knoevenagel condensation reactions. Dalton Trans 2023; 52:3671-3681. [PMID: 36847359 DOI: 10.1039/d3dt00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ya-Yu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Cai-Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ji-Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiu-Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| |
Collapse
|
8
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
9
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
10
|
A highly robust lutecium(III)-organic framework for the high catalytic performance on the chemical fixation CO2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
12
|
Mannarsamy M, Nandeshwar M, Muduli G, Prabusankar G. Highly Active Cyclic Zinc(II) Thione Catalyst for C-C and C-N Bond Formation Reactions. Chem Asian J 2022; 17:e202200594. [PMID: 35880638 DOI: 10.1002/asia.202200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/23/2022] [Indexed: 11/12/2022]
Abstract
The first discrete seven-membered cyclic zinc(II) complex catalyzed room temperature Knoevenagel condensation reactions, and the synthesis of perimidine derivatives has been reported under mild reaction conditions. The cyclic zinc(II) complex [( L) ZnBr 2 ] ( 1 ) was isolated from the reaction between 1-(2-hydroxyethyl)-3-isopropyl-benzimidazole-2-thione ( L ) and ZnBr 2 . Complex 1 was characterized by different analytic techniques such as FT-IR, CHNS, TGA, NMR, and SCXRD. The mononuclear zinc(II) complex 1 was utilized as a catalyst for Knoevenagel condensation reactions to isolate twenty different substituted methylene malononitriles with excellent yield. Besides, the zinc(II) thione complex 1 was utilized for the synthesis of 2,4-dihydroperimidine derivatives in a highly efficient manner. Catalyst 1 depicted wide substrate scopes. Overall, twenty different substituted methylene malononitriles and nine different perimidine derivatives were synthesized using catalyst 1 at room temperature. The present investigation features a mild and fast synthetic approach along with excellent functional group tolerance.
Collapse
Affiliation(s)
| | | | | | - Ganesan Prabusankar
- Indian Institute of Technology-Hyderabad, Chemistry, Kandi Medak Telangana India 502285, 502285, 502285, Hyderabad, INDIA
| |
Collapse
|
13
|
Huang GQ, Chen J, Huang YL, Wu K, Luo D, Jin JK, Zheng J, Xu SH, Lu W. Mixed-Linker Isoreticular Zn(II) Metal-Organic Frameworks as Brønsted Acid-Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorg Chem 2022; 61:8339-8348. [PMID: 35575208 DOI: 10.1021/acs.inorgchem.2c00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received an increasing amount of attention due to their potential to produce new topologies, pore metrics, and functionalities compared to MOFs with a single metal cluster and one organic linker. Herein, five isoreticular Zn MOFs were obtained by mixing two types of linear ditopic linkers in a one-pot solvothermal synthesis. Interestingly, in the resulting Zn MOFs a six-connected cyclic trinuclear Zn(II) cluster and an eight-connected linear trinuclear Zn(II) cluster coexist, leading to an uncommon (6,8)-connected network. Catalytic activities toward the solvent-free Knoevenagel reactions were observed for all of these MOFs. Further experimental and computational studies suggest that they are Brønsted acid-base bifunctional catalysts. Through chemical modifications of dicarboxylate ligands, including their aromatic backbones and substituents, we have successfully implemented reticular chemistry for the modulations of pore sizes, surface areas, and catalytic performances in a series of four-component isoreticular MOFs.
Collapse
Affiliation(s)
- Guo-Quan Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ji-Kang Jin
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Shi-Hai Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
14
|
Yu S, Zhang QH, Chen Z, Zou HH, Hu H, Liu D, Liang FP. Structure, assembly mechanism and magnetic properties of heterometallic dodecanuclear nanoclusters DyIII4MII8 (M = Ni, Co). Inorg Chem Front 2021. [DOI: 10.1039/d1qi01051d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two isostructural heterometallic dodecanuclear nanoclusters [Dy4Co8(μ3-OH)8(L)8(OAc)4(H2O)4]·3EtOH·3CH3CN·H2O (1) and [Dy4Ni8(μ3-OH)8(L)8(OAc)4(H2O)4]·3.5EtOH·0.5CH3CN·5H2O (2) with different assembly mechanisms are presented here.
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qin-Hua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|