1
|
Yu L, Liu F, Ji G, Wang X, Wang H, Chen G, Zhang Y, Yan M, Wang W. Ultra-stable, multimodal, and reversible luminescence switching in 0D Mn(II)-based hybrid halide nanofiber film for photonic applications. J Colloid Interface Sci 2025; 686:192-202. [PMID: 39893969 DOI: 10.1016/j.jcis.2025.01.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
The multifunctional and reversible stimuli-responsive luminescence switching offers significant potential for advanced photonic applications but presents considerable challenges for zero-dimensional (0D) hybrid halides. In this study, we design two 0D Mn(II)-based hybrid halides, (DMAP)2MnCl4·H2O and (DMAP)2MnCl4 (DMAP = protonated 4-dimethylaminopyridine), which demonstrate reversible photoluminescence (PL) and radioluminescence (RL) switching through the removal/insertion of guest H2O and single-crystal to single-crystal (SC-SC) transformation. By employing a one-step electrospinning strategy, the composite nanofiber film benefits from geometric confinement and the superior hydrophobicity of the PVDF matrix, exhibiting excellent reversible PL switching properties, remarkable repeatability (1000 cycles), and rapid response to breath (0.6 s). Notably, the composite nanofiber film achieves a rare triple-mode reversible PL switching, including off-onI (green), color-tunable onI-onII (green-yellow), and onII (yellow)-off modes. This innovative composite holds great potential for novel applications in molecular-level dynamic photonic devices, including data storage, information security, optical logic gates, and flexible X-ray imaging.
Collapse
Affiliation(s)
- Lu Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guanfeng Ji
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaojia Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Gang Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Yuhai Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Shen C, Liu J, Sun D, Yang K, Zhang B, Wu K, Wang J, Wang D. (3-C 6H 10N 2)ZnX 4 (X = Cl and Br): Two Excellent UV Nonlinear Optical Crystals Designed by Combination of π-conjugated and [ZnX 4] 2- Tetrahedral Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501471. [PMID: 40143792 DOI: 10.1002/smll.202501471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Indexed: 03/28/2025]
Abstract
To design excellent UV nonlinear optical crystals, via a combination of the two excellent genes, planar π-conjugated 3-(aminomethyl)pyridinium ((3-AMP)2+, (C6H10N2)2+) and d10 metallic tetrahedral anion, two novel organic-inorganic hybrid (3-C6H10N2)ZnX4 (X = Cl and Br) bulk crystals are synthesized using a simple solution method. Remarkably, they exhibit excellent UV nonlinear optical performances, including in short UV absorption edge (229 and 235 nm), robust second harmonic generation (SHG) intensity (2.05 and 4.36 × KDP), suitable large birefringence (0.129-0.144@546 nm) and short phase-matching wavelength (238 and 262 nm). First-principles calculations elucidate that the excellent SHG performances of (3-AMP)ZnCl4 and (3-AMP)ZnBr4 are dominated by the synergetic contributions of planar π-conjugated (C6H10N2)2+ and distorted [ZnX4]2- tetrahedral groups. This research not only provides two NLO-active genes but also paves the way for efficient exploration and rational design of organic-inorganic hybrid new NLO materials with optimal balanced optical performances.
Collapse
Affiliation(s)
- Chuanying Shen
- College of Physics and Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jie Liu
- College of Physics and Engineering, Qufu Normal University, Qufu, 273165, China
| | - Defu Sun
- College of Physics and Engineering, Qufu Normal University, Qufu, 273165, China
| | - Kang Yang
- College of Physics and Engineering, Qufu Normal University, Qufu, 273165, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Duanliang Wang
- College of Physics and Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
3
|
Li C, Wei Y, Li Y, Luo Z, Liu Y, He M, Zhang Y, He X, Chang X, Quan Z. Manipulating Chiroptical Activities in 0D Chiral Hybrid Manganese Bromides by Solvent Molecular Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400338. [PMID: 38766952 DOI: 10.1002/smll.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
0D hybrid metal halides (0D HMHs) with fully isolated inorganic units provide an ideal platform for studying the correlations between chiroptical activities and crystal structures at atomic levels. Here, through the incorporation of different solvent molecules, a series of 0D chiral manganese bromides (RR/SS-C20H28N2)3MnBr8·2X (X = C2H5OH, CH3OH, or H2O) are synthesized to elucidate their chiroptical properties. They show negligible circular dichroism signals of Mn absorptions due to C2v-symmetric [MnBr4]2- tetrahedra. However, they display distinct circularly polarized luminescence (CPL) signals with continuously increased luminescence asymmetry factors (glum) from 10-4 (X = C2H5OH) to 10-3 (X = H2O). The increased glum value is structurally revealed to originate from the enhancement of [MnBr4]2- tetrahedral bond-angle distortions, due to the presence of different solvent molecules. Furthermore, (RR/SS-C20H28N2)MnBr4·H2O enantiomers with larger bond-angle distortions of [MnBr4]2- tetrahedra are synthesized based on hydrobromic acid-induced structural transformation of (RR/SS-C20H28N2)3MnBr8·2H2O enantiomers. Therefore, such (RR/SS-C20H28N2)MnBr4·H2O enantiomers exhibit enhanced CPL signals with |glum| up to 1.23 × 10-2. This work provides unique insight into enhancing chiroptical activities in 0D HMH systems.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meiying He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yan Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
4
|
Hou R, Shen C, Chen H, Meng L, Xu L, Wang J, Wang D. Temperature-Induced Reversible Photoluminescence Switching and Ultraviolet-Pumped Light-Emitting Diode Applications of a Perovskite (C 6H 10N 2) 2MnCl 6·2H 2O Crystal. Inorg Chem 2024; 63:803-811. [PMID: 38113036 DOI: 10.1021/acs.inorgchem.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid halides present many fascinating photophysical properties for promising optoelectronic applications such as light-emitting diodes (LEDs), X-ray imaging, photodetectors, and anticounterfeiting. Herein, a centimeter-sized single crystal (C6H10N2)2MnCl6·2H2O with a 0D perovskite structure was obtained via a solvent evaporation method. A bright red emission at 618 nm with a larger Stokes shift of more than 300 nm and a long fluorescence lifetime of 6.21 ms were measured. Notably, a reversible PL switching from red emission to nonluminescence has been presented in the cycles of heating-cooling processes from RT to 100 °C. Furthermore, the temperature-induced luminescence shows a quick recovery after 20 conversion cycles, exhibiting excellent stability and temperature sensing. According to the structural and theoretical analyses, the temperature-induced luminescence is primarily due to hydrogen-bonding interactions between (MnCl6)4- and H2O molecules. Particularly, a temperature anticounterfeiting application has been designed based on its reversible temperature-dependent PL switching. Importantly, the ultraviolet-pumped LEDs fabricated by (C6H10N2)2MnCl6·2H2O single crystals are perfectly achieved. Anyway, this work clearly demonstrates that 0D Mn-based perovskite with temperature-dependent PL switching greatly extends its potential applications in electro-optical display, temperature sensing, and anticounterfeiting devices.
Collapse
Affiliation(s)
- Ruoxian Hou
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Chuanying Shen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Hanzhang Chen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Lingqiang Meng
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Longyun Xu
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Duanliang Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
5
|
Chen R, Sun C, Cheng X, Lin Y, Zhou J, Yin J, Cui BB, Mao L. One-Dimensional Organic-Inorganic Lead Bromide Hybrids with Excitation-Dependent White-Light Emission Templated by Pyridinium Derivatives. Inorg Chem 2023. [PMID: 37285221 DOI: 10.1021/acs.inorgchem.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted widespread attention due to their excellent tunability and versatility. Here, we have selected pyridinium derivatives with different substituent groups or substitution positions as the organic templating cations and obtained six 1D chain-like structures. They are divided into three types: type I (single chain), type II (double chain), and type III (triple chain), with tunable optical band gaps and emission properties. Among them, only (2,4-LD)PbBr3 (2,4-LD = 2,4-lutidine) shows an exciton-dependent emission phenomenon, ranging from strong yellow-white to weak red-white light. By comparing its photoluminescence spectrum with that of its bromate (2,4-LD)Br, it is found that the strong yellow-white emission at 534 nm mainly came from the organic component. Furthermore, through a comparison of the fluorescence spectra and lifetimes of (2,4-LD)PbBr3 and (2-MP)PbBr3 (2-MP = 2-methylpyridine) with similar structures at different temperatures, we confirm that the tunable emission of (2,4-LD)PbBr3 comes from different photoluminescent sources corresponding to organic cations and self-trapped excitons. Density functional theory calculations further reveal that (2,4-LD)PbBr3 has a stronger interaction between organic and inorganic components compared to (2-MP)PbBr3. This work highlights the importance of organic templating cations in hybrid metal halides and the new functionalities associated with them.
Collapse
Affiliation(s)
- Runan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Yufan Lin
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Jiaqian Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Manganese(II) Bromide Compound with Diprotonated 1-Hydroxy-2-(pyridin-2-yl)-4,5,6,7-tetrahydrobenzimidazole: Dual Emission and the Effect of Proton Transfers. INORGANICS 2022. [DOI: 10.3390/inorganics10120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An organic–inorganic cation–anion manganese(II) tetrabromide compound with diprotonated 1-hydroxy-2-(pyridin-2-yl)-4,5,6,7-tetrahydrobenzimidazole, [H3L][MnBr4][H2O], has been synthesized and investigated. The compound has a few possible pathways for proton transfers, which play an important role in the observed luminescence, optical, and magnetic properties. The proton transfers result in the appearance of two-band luminescence. One band is caused by the Mn(II) d-d transitions. The other band is caused by the transition from the triplet state of organic cation and the d-d transition of manganese(II) coupled through {[H3L]}-{[MnBr4]}-{[H2O]} vibrations. The optical absorption spectra of [H3L][MnBr4][H2O] indicate the presence of two direct and one indirect band transitions. The reason for the two-band luminescence and complex optical absorption in [H3L][MnBr4][H2O] were additionally considered using the DFT calculations.
Collapse
|
7
|
Cao T, Wang Y, Xu Z, Ye L, Zhuang X. Two Zero‐Dimensional In
3+
‐Based Hybrid Halides: Single‐Component Materials Showing Bluish‐White‐Light Emission. ChemistrySelect 2022. [DOI: 10.1002/slct.202203074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tengfei Cao
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 Fujian China
- College of Chemistry Fuzhou University Fuzhou 350116 Fujian Chi
| | - Yuanjie Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 Fujian China
- College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 Fujian China
| | - Zhihuang Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 Fujian China
| | - Liwang Ye
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 Fujian China
| | - Xinxin Zhuang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 Fujian China
| |
Collapse
|
8
|
Panda DP, Swain D, Chaudhary M, Mishra S, Bhutani G, De AK, Waghmare UV, Sundaresan A. Electron-Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium) 6Mn 3X 12 (X = Cl and Br). Inorg Chem 2022; 61:17026-17036. [PMID: 36242586 DOI: 10.1021/acs.inorgchem.2c01581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (guanidinium)6Mn3Br12 [GuMBr], consisting of trimeric units of distorted MnBr6 octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band. The excited-state dynamics was studied using femtosecond transient absorption spectroscopy, which confirms the STE emission. Further, this compound is highly emissive with a PL quantum yield of ∼50%. With chloride ion incorporation, we observe enhancement of the emissive properties and attribute it to the effects of intrinsic quantum confinement. Localized electronic states in flat bands lining the gap and their strong coupling with phonons are confirmed with first-principles calculations.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Mohit Chaudhary
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Samita Mishra
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - A Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| |
Collapse
|
9
|
Lin J, Guo Z, Sun N, Liu K, He S, Chen X, Zhao J, Liu Q, Yuan W. Improving the Chemical Stability of Narrow-Band Green-Emitting Manganese(II) Hybrid by Zn-Doping. Inorg Chem 2022; 61:15266-15272. [PMID: 36102177 DOI: 10.1021/acs.inorgchem.2c02598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid tetrahedral Mn(II)-based halides show great potential for narrow-band green emitters, which could be applied in the liquid crystal display field. However, the strategy to improve the chemical stability of tetrahedral Mn hybrids has not been fully investigated. Here, we demonstrate that Zn doping can be an effective route to significantly improve the stability of tetrahedral Mn hybrids under air conditions without compromising the luminous efficiency. A new bromide (ABI)2MnBr4 (ABI = 2-aminobenzimidazole) is synthesized, which exhibits a typical zero-dimensional structure with isolated [MnBr4]2- tetrahedra in the P1̅ space group. Under 450 nm excitation, a narrow-band green-emitting peak at 516 nm is observed with a full width at half maximum of 42 nm. It is indicated that spontaneous phase transition from the tetrahedral to octahedral motif occurs in this Mn hybrid driven by humidity, combined with the emission color change from green to red. Interestingly, this phase transition could be strongly suppressed by Zn doping with a very low doping amount (5%), leading to the significantly improved chemical stability of (ABI)2MnBr4 without reducing the photoluminescence quantum yield. Our work provides a simple and feasible strategy to enhance the chemical stability of the green-emitting (ABI)2MnBr4, and it may also be applicable for other tetrahedral Mn-based hybrids.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Ren Q, Zhang J, Mao Y, Molokeev MS, Zhou G, Zhang XM. Ligand Engineering Triggered Efficiency Tunable Emission in Zero-Dimensional Manganese Hybrids for White Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3142. [PMID: 36144929 PMCID: PMC9501502 DOI: 10.3390/nano12183142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Zero-dimensional (0D) hybrid manganese halides have emerged as promising platforms for the white light-emitting diodes (w-LEDs) owing to their excellent optical properties. Necessary for researching on the structure-activity relationship of photoluminescence (PL), the novel manganese bromides (C13H14N)2MnBr4 and (C13H26N)2MnBr4 are reported by screening two ligands with similar atomic arrangements but various steric configurations. It is found that (C13H14N)2MnBr4 with planar configuration tends to promote a stronger electron-phonon coupling, crystal filed effect and concentration-quenching effect than (C13H26N)2MnBr4 with chair configuration, resulting in the broadband emission (FWHM = 63 nm) to peak at 539 nm with a large Stokes shift (70 nm) and a relatively low photoluminescence quantum yield (PLQY) (46.23%), which makes for the potential application (LED-1, Ra = 82.1) in solid-state lighting. In contrast, (C13H26N)2MnBr4 exhibits a narrowband emission (FWHM = 44 nm) which peaked at 515 nm with a small Stokes shift (47 nm) and a high PLQY of 64.60%, and the as-fabricated white LED-2 reaches a wide colour gamut of 107.8% National Television Standards Committee (NTSC), thus highlighting the immeasurable application prospects in solid-state display. This work clarifies the significance of the spatial configuration of organic cations in hybrids perovskites and enriches the design ideas for function-oriented low-dimensional emitters.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Maxim S. Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Physics, Far Eastern State Transport University, 680021 Khabarovsk, Russia
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
- Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
11
|
Panda DP, Swain D, Sundaresan A. Zero-Dimensional (Piperidinium) 2MnBr 4: Ring Puckering-Induced Isostructural Transition and Strong Electron-Phonon Coupling-Mediated Self-Trapped Exciton Emission. Inorg Chem 2022; 61:11377-11386. [PMID: 35820065 DOI: 10.1021/acs.inorgchem.2c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report on the synthesis, structure, and photophysical properties of a lead-free organic-inorganic hybrid halide, (Piperidinium)2MnBr4 (PipMBr). It crystallizes in a monoclinic P21/n structure, with isolated MnBr4 tetrahedra representing a zero-dimensional compound. It undergoes a reversible isostructural transition at 422/417 K in the heating/cooling cycle owing to the hydrogen-bonding rearrangement mediated by ring puckering of piperidinium cations. This compound exhibits green emission with a photoluminescence quantum yield of 51%. Interestingly, strong electron-longitudinal optical phonon coupling with γLO of 237 meV is evidenced from the broadening of the temperature-dependent emission linewidth and the Raman spectrum. Such strong electron-phonon coupling and a relatively low Debye temperature (137 K) suggest the self-trapped exciton emission in this compound.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
12
|
Zhang L, Luo Z, Wei Y, Wang W, Liu Y, Li C, He X, Quan Z. Zero-dimensional hybrid binuclear manganese chloride with thermally stable yellow emission. Chem Commun (Camb) 2022; 58:6926-6929. [PMID: 35638713 DOI: 10.1039/d2cc01522f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Photoluminescence (PL) thermal quenching of hybrid metal halides blocks their applications. Herein, a novel type of 0D hybrid metal halide, [Pb(C12H24O6)Cl]2[Mn2Cl6], with broad yellow emission and near-unity PL quantum yield is reported. Importantly, it preserves outstanding thermal stability up to 450 K.
Collapse
Affiliation(s)
- Liming Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, Heilongjiang, 150001, China.,Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Wei Wang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
13
|
Kumar Das D, Bakthavatsalam R, Anilkumar V, Mali BP, Ahmed MS, Raavi SSK, Pallepogu R, Kundu J. Controlled Modulation of the Structure and Luminescence Properties of Zero-Dimensional Manganese Halide Hybrids through Structure-Directing Metal-Ion (Cd 2+ and Zn 2+) Centers. Inorg Chem 2022; 61:5363-5372. [PMID: 35319883 DOI: 10.1021/acs.inorgchem.2c00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Zero-dimensional (0D) metal halide hybrids with high exciton binding energy are excellent materials for lighting applications. Controlling/modulating the structure of the constituent metal halide units allows tunability of their photoluminescence properties. 0D manganese halide hybrids are currently attracting research efforts in lighting applications due to their eco-friendly and strong emission. However, structural transformation-induced tunability of their photophysical properties has rarely been reported. Herein, we demonstrate a rational synthetic strategy to modulate the structure and luminescence properties of 0D Mn(II) halide hybrids utilizing the structure-directing d10 metal ions (Cd2+/Zn2+). 0D metal halide hybrids of Cd2+/Zn2+, which act as hosts with tunable structures, accept Mn2+ ions as substitutional dopants. This structural flexibility of the host d10 metal ions is realized by optimizing the metal-to-ligand ratio (Cd/AEPip). This reaction parameter allows structural transformation from an octahedral (AEPipCdMnBrOh) to a tetrahedral (AEPipCdMnBrTd) 0D Mn halide hybrid with tunable luminescence (orange → green) with high photoluminescence quantum yield. Interestingly, when Zn2+ is utilized, a tetrahedral AEPipZnMnBr structure forms exclusively with strong green emission. Optical and single-crystal X-ray diffraction structural analysis of the host and the doped system supports our experimental data and confirms the structure-directing role played by Cd2+/Zn2+ centers. This work demonstrates a rational strategy to modulate the structure/luminescence properties of 0D Mn(II) halide hybrids, which can further be implemented for other 0D metal halide hybrids.
Collapse
Affiliation(s)
- Deep Kumar Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Rangarajan Bakthavatsalam
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Anilkumar
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Bhupendra P Mali
- CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Md Soif Ahmed
- Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Raghavaiah Pallepogu
- Department of Chemistry, Central University of Karnataka, Kadaganchi, Kalaburagi, Karnataka 585367, India
| | - Janardan Kundu
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
14
|
Sun C, Zhong QQ, Zhang X, Xiao PC, Cheng Y, Gao YJ, Liu GD, Lei XW. A Zero-Dimensional Hybrid Cadmium Perovskite with Highly Efficient Orange-Red Light Emission. Inorg Chem 2021; 60:18879-18888. [PMID: 34872252 DOI: 10.1021/acs.inorgchem.1c02661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-dimensional organic-inorganic hybrid metal halide materials have been extensively studied due to their excellent optoelectronic performances. Herein, by using the facile wet-chemistry method, we designed one new hybrid cadmium bromide of (H3AEP)2CdBr6·2Br based on discrete octahedral [CdBr6]4- units. Remarkably, the bulk crystal of (H3AEP)2CdBr6·2Br exhibits strong broadband orange-red light emission from the radiative recombination of self-trapped excitons (STEs) with a high photoluminescence quantum yield (PLQY) of 9%. Benefiting from the highly efficient luminescent performance, this 0D cadmium perovskite can be utilized as an excellent down-conversion red phosphor to assemble a white light-emitting diode, and a high color rendering index (CRI) of 93 is realized. As far as we know, this is the first orange-red light-emitting hybrid cadmium perovskite which promotes the full-color display in this system.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China.,Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China
| | - Qian-Qian Zhong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xin Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Pan-Chao Xiao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yu-Jia Gao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Guo-Dong Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
15
|
Kong Q, Yang B, Chen J, Zhang R, Liu S, Zheng D, Zhang H, Liu Q, Wang Y, Han K. Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color‐Tunable Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qingkun Kong
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of the Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Siping Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Hongling Zhang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Qingtong Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Yiying Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of the Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
16
|
Kong Q, Yang B, Chen J, Zhang R, Liu S, Zheng D, Zhang H, Liu Q, Wang Y, Han K. Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color-Tunable Emission. Angew Chem Int Ed Engl 2021; 60:19653-19659. [PMID: 34151496 DOI: 10.1002/anie.202105413] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Indexed: 12/20/2022]
Abstract
For display applications, it is highly desirable to obtain tunable red/green/blue emission. However, lead-free perovskite nanocrystals (NCs) generally exhibit broadband emission with poor color purity. Herein, we developed a unique phase transition strategy to engineer the emission color of lead-free cesium manganese bromides NCs and we can achieve a tunable red/green/blue emission with high color purity in these NCs. Such phase transition can be triggered by isopropanol: from one dimensional (1D) CsMnBr3 NCs (red-color emission) to zero dimensional (0D) Cs3 MnBr5 NCs (green-color emission). Furthermore, in a humid environment both 1D CsMnBr3 NCs and 0D Cs3 MnBr5 NCs can be transformed into 0D Cs2 MnBr4 ⋅2 H2 O NCs (blue-color emission). Cs2 MnBr4 ⋅2 H2 O NCs could inversely transform into the mixture of CsMnBr3 and Cs3 MnBr5 phase during the thermal annealing dehydration step. Our work highlights the tunable optical properties in single component NCs via phase engineering and provides a new avenue for future endeavors in light-emitting devices.
Collapse
Affiliation(s)
- Qingkun Kong
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Junsheng Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Siping Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Hongling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qingtong Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yiying Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|