1
|
Yang SY, Chen Y, Kwok RTK, Lam JWY, Tang BZ. Platinum complexes with aggregation-induced emission. Chem Soc Rev 2024; 53:5366-5393. [PMID: 38712843 DOI: 10.1039/d4cs00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Yingying Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
2
|
Khistiaeva VV, Buss S, Eskelinen T, Hirva P, Kinnunen N, Friedel J, Kletsch L, Klein A, Strassert CA, Koshevoy IO. Cyanido-bridged diplatinum(ii) complexes: ligand and solvent effect on aggregation and luminescence. Chem Sci 2024; 15:4005-4018. [PMID: 38487239 PMCID: PMC10935663 DOI: 10.1039/d3sc06941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
The association of platinum(ii)-based luminophores, which is caused by metal⋯metal and π-π stacking interactions, has been actively exploited in supramolecular construction of photofunctional molecular materials. Herein, we describe a series of bimetallic complexes [{Pt(C^N^/*N)}2(CN)][BAr4F], containing cyanido-bridged cyclometalated Pt(ii) chromophore fragments (HC^N^N = 6-phenyl-2,2'-bipyridine, (benzyltriazolyl)-phenylpyridine, and pyrazolyl-phenylpyridine; HC^N*N = N-pentyl-6-phenyl-N-(pyridin-2-yl)pyridin-2-amine; ^/* denote five/six-membered metallocycles). These compounds are intensely phosphorescent at room temperature showing quantum yields up to 0.73 in solution and 0.62 in the solid state, which are generally higher than those of the mononuclear relatives [Pt(C^N^/*N)(CN)]. The complex cations bearing sterically unhindered -C^N^N ligands readily assemble in solution, reaching the tetrameric species [{Pt(C^N^N)}2(CN)]44+ as suggested by diffusion NMR spectroscopy. The size of the aggregates can be regulated by the concentration, temperature, and polarity of the solvent that allows to alter the emission from green to near-IR. In the solid state, the maximum of low-energy luminescence is shifted up to 912 nm. The results show that photophysical properties of discrete complexes and the intermolecular aggregation can be substantially enhanced by utilizing the rigid bimetallic units giving rise to novel dynamic light emitting Pt(ii) systems.
Collapse
Affiliation(s)
- Viktoria V Khistiaeva
- Department of Chemistry, University of Eastern Finland P.O. Box 111 FI-80100 Joensuu Finland
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, Universität Münster, CiMIC, CeNTech Heisenbergstraße 11 48149 Münster Germany
| | - Toni Eskelinen
- Department of Chemistry, University of Eastern Finland P.O. Box 111 FI-80100 Joensuu Finland
- Department of Chemistry and Materials Science, Aalto University FI-00076 Aalto Finland
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland P.O. Box 111 FI-80100 Joensuu Finland
| | - Niko Kinnunen
- Department of Chemistry, University of Eastern Finland P.O. Box 111 FI-80100 Joensuu Finland
| | - Joshua Friedel
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne Greinstrasse 6 D-50939 Cologne Germany
| | - Lukas Kletsch
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne Greinstrasse 6 D-50939 Cologne Germany
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne Greinstrasse 6 D-50939 Cologne Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, CiMIC, CeNTech Heisenbergstraße 11 48149 Münster Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland P.O. Box 111 FI-80100 Joensuu Finland
| |
Collapse
|
3
|
Wu J, Xu B, Xu Y, Yue L, Chen J, Xie G, Zhao J. Reblooming of the cis-Bis(2-phenylpyridine) Platinum(II) Complex: Synthesis Updating, Aggregation-Induced Emission, Electroluminescence, and Cell Imaging. Inorg Chem 2023; 62:19142-19152. [PMID: 37945528 DOI: 10.1021/acs.inorgchem.3c03618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Studies on the syntheses, photophysical properties, and applications of cis-bis(2-phenylpyridine) platinum(II) complex (Pt(ppy)2) family are of great importance, but very limited progress has been achieved to date. Herein, a one-pot method was established for the syntheses of Pt(ppy)2-type complexes Pt-ppy and Pt-tBu. These two compounds were nonemissive in dilute solutions. However, they produced intense red and deep-red phosphorescence in the aggregation and film states, with lifetimes and quantum yields up to 1.92 μs and 70%, respectively, exhibiting unique aggregation-induced emission (AIE) characteristics. According to the experimental and theoretical studies, molecular configuration transformation (MCT) in the excited state may occur because of the d-d transition from the Pt center, causing nonradiative transitions in the solution. Nevertheless, the MCT would be largely restricted by the intermolecular interactions or rigid matrix, thereby enabling efficient phosphorescence in the aggregation state and in the PMMA films. Consequently, the AIE characteristics of Pt-ppy and Pt-tBu probably result from the restriction of molecular configuration transformation (RMCT). Due to the π-π and/or weak Pt-Pt interactions and the concentration-dependent emission characteristics, they emit deep-red and NIR emissions generated by excimer and/or MMLCT emitting species. Inspired by their AIE features, electroluminescence and cell imaging applications are explored. To the best of our knowledge, this is the first comprehensive study on the synthesis optimization, photophysical properties, AIE characteristics, and applications of the Pt(ppy)2-type complexes, which may rebloom the research studies on this type of Pt(II) complex family and provide valuable insights on the development of phosphorescent AIE metal-organic complexes.
Collapse
Affiliation(s)
- Jianglan Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang ,Guizhou 550025, China
| | - Bingjia Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yanzi Xu
- School of Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ling Yue
- School of Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guohua Xie
- Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiang Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang ,Guizhou 550025, China
| |
Collapse
|
4
|
Chen X, Rehmat N, Kurganskii IV, Maity P, Elmali A, Zhao J, Karatay A, Mohammed OF, Fedin MV. Efficient Spin-Orbit Charge-Transfer Intersystem Crossing and Slow Intramolecular Triplet-Triplet Energy Transfer in Bodipy-Perylenebisimide Compact Dyads and Triads. Chemistry 2023; 29:e202302137. [PMID: 37553294 DOI: 10.1002/chem.202302137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 μs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 μs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ivan V Kurganskii
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Beşevler, Ankara, Türkiye
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matvey V Fedin
- International Tomography Center, SB RAS, and, Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Lázaro A, Bosque R, Ward JS, Rissanen K, Crespo M, Rodríguez L. Toward Near-Infrared Emission in Pt(II)-Cyclometallated Compounds: From Excimers' Formation to Aggregation-Induced Emission. Inorg Chem 2023; 62:2000-2012. [PMID: 36696563 PMCID: PMC9906741 DOI: 10.1021/acs.inorgchem.2c03490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two series of Pt(II)-cyclometallated compounds containing N^C^N tridentate and alkynyl-chromophore ligands have been synthesized and structurally characterized. The N^C^N ligands differ on the presence of R1 = H or F in the central aromatic ring, while six different chromophores have been introduced to the alkynyl moiety. Single-crystal X-ray structures for some of the compounds reveal the presence of weak intermolecular contacts responsible for the formation of some dimers or aggregates. The photophysical characterization shows the presence of two emission bands in solution assigned to the 3π-π* transition from the N^C^N ligands mixed with 3MLCT/3ILCT transitions (higher energy band) in deaerated samples. The formation of excimers has also been identified as a broad band at longer wavelengths [near-infrared (NIR) emission] that becomes the main emission band for compounds containing phenanthrene as the chromophore. NIR emission behavior has also been explored using acetonitrile/water mixtures, and the presence of aggregates that emit at ca. 650 nm has also been detected.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ramon Bosque
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Jas S. Ward
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Margarita Crespo
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain,
| |
Collapse
|
6
|
Stipurin S, Strassner T. Phosphorescent Bimetallic C^C* Platinum(ii) Complexes with Bridging Substituted Diphenylformamidinates. Chemistry 2022; 28:e202202227. [PMID: 36284471 PMCID: PMC10092827 DOI: 10.1002/chem.202202227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/05/2022]
Abstract
A series of phosphorescent bimetallic platinum(II) complexes is presented, which were synthesized by the combination of bidentate cyclometalated N-heterocyclic carbene ligands and different bridging diphenylformamidinates. The complexes were characterized by standard techniques and additionally two solid-state structures could be obtained. Photoluminescence measurements revealed the strong emissive behavior of the compounds with quantum yields of up to 90 % and emission lifetimes of approx. 2 μs. The effect of the substitution pattern in the bridging ligands on the structural and photophysical properties of the complexes was examined in detail and rationalized by density functional theory calculations (PBE0/6-311G*).
Collapse
Affiliation(s)
- Sergej Stipurin
- Physikalische Organische ChemieTechnische Universität Dresden01069DresdenGermany
| | - Thomas Strassner
- Physikalische Organische ChemieTechnische Universität Dresden01069DresdenGermany
| |
Collapse
|
7
|
Solomatina AI, Galenko EE, Kozina DO, Kalinichev AA, Baigildin VA, Prudovskaya NA, Shakirova JR, Khlebnikov AF, Porsev VV, Evarestov RA, Tunik SP. Nonsymmetric [Pt(C^N*N′^C′)] Complexes: Aggregation‐Induced Emission in the Solid State and in Nanoparticles Tuned by Ligand Structure. Chemistry 2022; 28:e202202207. [DOI: 10.1002/chem.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Anastasia I. Solomatina
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Ekaterina E. Galenko
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Daria O. Kozina
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Alexey A. Kalinichev
- Center for Optical and Laser Materials Research Research Park of St. Petersburg State University Universitetskaya Emb. 7–9 199034 St. Petersburg Russia
| | - Vadim A. Baigildin
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Natalia A. Prudovskaya
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Julia R. Shakirova
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Vitaly V. Porsev
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Robert A. Evarestov
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| | - Sergey P. Tunik
- Institute of Chemistry St. Petersburg State University Universitetskii av., Sankt-Peterburg, 26 198504 St. Petersburg Russia
| |
Collapse
|
8
|
Zharskaia NA, Solomatina AI, Liao YC, Galenko EE, Khlebnikov AF, Chou PT, Chelushkin PS, Tunik SP. Aggregation-Induced Ignition of Near-Infrared Phosphorescence of Non-Symmetric [Pt(C^N*N'^C')] Complex in Poly(caprolactone)-based Block Copolymer Micelles: Evaluating the Alternative Design of Near-Infrared Oxygen Biosensors. BIOSENSORS 2022; 12:695. [PMID: 36140080 PMCID: PMC9496585 DOI: 10.3390/bios12090695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 02/03/2023]
Abstract
In the present work, we described the preparation and characterization of the micelles based on amphiphilic poly(ε-caprolactone-block-ethylene glycol) block copolymer (PCL-b-PEG) loaded with non-symmetric [Pt(C^N*N'^C')] complex (Pt1) (where C^N*N'^C': 6-(phenyl(6-(thiophene-2-yl)pyridin-2-yl)amino)-2-(tyophene-2-yl)nicotinate). The obtained nanospecies displayed the ignition of near-infrared (NIR) phosphorescence upon an increase in the content of the platinum complexes in the micelles, which acted as the major emission component at 12 wt.% of Pt1. Emergence of the NIR band at 780 nm was also accompanied by a 3-fold growth of the quantum yield and an increase in the two-photon absorption cross-section that reached the value of 450 GM. Both effects are believed to be the result of progressive platinum complex aggregation inside hydrophobic poly(caprolactone) cores of block copolymer micelles, which has been ascribed to aggregation induced emission (AIE). The resulting phosphorescent (Pt1@PCL-b-PEG) micelles demonstrated pronounced sensitivity towards molecular oxygen, the key intracellular bioanalyte. The detailed photophysical analysis of the AIE phenomena revealed that the NIR emission most probably occurred due to the excimeric excited state of the 3MMLCT character. Evaluation of the Pt1@PCL-b-PEG efficacy as a lifetime intracellular oxygen biosensor carried out in CHO-K1 live cells demonstrated the linear response of the probe emission lifetime towards this analyte accompanied by a pronounced influence of serum albumin on the lifetime response. Nevertheless, Pt1@PCL-b-PEG can serve as a semi-quantitative lifetime oxygen nanosensor. The key result of this study consists of the demonstration of an alternative approach for the preparation of NIR biosensors by taking advantage of in situ generation of NIR emission due to the nanoconfined aggregation of Pt (II) complexes inside the micellar nanocarriers.
Collapse
Affiliation(s)
- Nina A. Zharskaia
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| |
Collapse
|
9
|
Wang SP, Wu XZ, Kong SM, Bai FQ, Zhang HX. Refine the evaluation of photophysical properties of organometallic chromophores under confined molecular crystal conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121168. [PMID: 35316630 DOI: 10.1016/j.saa.2022.121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Many impressive results have been achieved in the researches and developments of luminescent chromophore materials by combining experimental synthesis and characterization with the cooperative theoretical calculation. However, the existing theoretical studies are usually based on the intrinsic properties of isolated molecules and extend their properties to the whole molecular material directly, which will lead to the persistence of errors and affect the computational design of molecular materials with different morphology. Therefore, the study of multimolecular systems needs to further consider the environmental effects on molecules. This work is based on the calculation of a series of crystalline Ir(III) complexes under background charge conditions to reveal how the surrounding charge affects the photophysical properties of a series of transition metal Ir(III) complex materials. Through this method, the study of crystalline complexes is found to be more authentically reproduced the charge transfer state, energy level, and reorganization energy, etc., and shows the changes of luminescence characteristics and efficiency. The change of the electronic structure of the target molecule would be characterized more comprehensively, thus obtaining more accurate results for the excited states properties of molecular materials.
Collapse
Affiliation(s)
- Shi-Ping Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China
| | - Xin-Zhao Wu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China
| | - Si-Min Kong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China
| | - Fu-Quan Bai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China; Key Laboratory of Physics and Technology for Advanced Batteries, (Ministry of Education), Jilin University, Changchun 130023, China.
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
10
|
Zhang RY, Cui MH, Wang WW, Li WL, Zhao JP, Liu FC. Dicarboxylate Modulating Molecular-Ionic Platinum Compounds with Variable Stacking and Photoluminescence. Inorg Chem 2022; 61:1997-2009. [PMID: 35029375 DOI: 10.1021/acs.inorgchem.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.
Collapse
Affiliation(s)
- Ruo-Yi Zhang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ming-Hui Cui
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei-Wei Wang
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wen-Liang Li
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fu-Chen Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|