1
|
Wang T, Xu Y, Du M, Hu Z, Liu L. Synthesis, Characterization and Application of NNN Pincer Manganese Complexes with Pyrazole Framework in α-Alkylation Reaction. Molecules 2025; 30:1465. [PMID: 40286071 PMCID: PMC11990691 DOI: 10.3390/molecules30071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
A series of novel NNN pincer manganese complexes based on pyrazole skeleton 4 were efficiently synthesized in a two-step process. All of the new complexes were fully characterized by 1H, 13C NMR spectra. Furthermore, the molecular structures of complexes 4a and 4c were also determined by X-ray single-crystal diffraction. The manganese(I) catalysts obtained showed efficient catalytic activity in the α-alkylation reaction of ketones with alcohols. Under optimal reaction conditions, the expected products were procured with moderate to high yields.
Collapse
Affiliation(s)
- Tao Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yongli Xu
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Mengxin Du
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Zhiyuan Hu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
2
|
Mohanty M, Das S, Pattanayak PD, Lima S, Kaminsky W, Dinda R. Ru III-Morpholine-Derived Thiosemicarbazone-Based Metallodrugs: Lysosome-Targeted Anticancer Agents. ACS APPLIED BIO MATERIALS 2025; 8:1210-1226. [PMID: 39806879 DOI: 10.1021/acsabm.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three RuIII complexes 1-3 of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of 2 through a single-crystal X-ray diffraction study. The solution stability of 1-3 was tested using conventional techniques such as UV-vis and HRMS. Further, the anticancer activity of 1-3 was tested in HT-29 and HeLa cancer cell lines. To gain insight into their mechanism of action, the cytotoxicity, hydrophobicity, and the interaction of 1-3 with DNA and HSA were evaluated by different conventional methods such as absorption, fluorescence, and circular dichroism studies. Along with favorable biomolecule interaction, 1-3 revealed potent selectivity toward cancer cells, which is a prerequisite for the generation of an anticancer drug. According to cell viability results, 1 has the highest cytotoxicity among all in the group, against both cells, respectively. Additionally, the fluorescence-active ruthenium complexes selectively target lysosomes, which is evaluated by live-cell imaging. 1-3 disrupt the lysosome membrane potential by generating an excessive amount of reactive oxygen species, which results in an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | | | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Puttaswamy NY, Mahanta P, Sarma P, Medhi C, Kaid SMA, Kullaiah B, Basumatary D, Manjasetty BA. Structure-based biological investigations on ruthenium complexes containing 2,2'-bipyridine ligands and their applications in photodynamic therapy as a potential photosensitizer. Chem Biol Drug Des 2023; 102:1506-1520. [PMID: 37722881 DOI: 10.1111/cbdd.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Ruthenium complexes have been investigated for various biological applications by virtue of their radical scavenging, DNA binding, receptor binding, and cytotoxic abilities; especially the possible potential application of these complexes in photodynamic therapy (PDT). This study focuses on the synthesis, structural characterization and biological application (pertaining to its cytotoxicity and radical generation) of ruthenium complexed with salicylaldehyde fumaryl-dihydrazone (slfhH4 ), salicylaldehyde glutaryl-di-hydrazone (slfgH4 ) and 2,2'-bipyridine (bpy). During the synthesis, the anticipated complex was precipitated out but as serendipity, Ruthenium(II) tris (2,2'-bipyridyl) monochloride nonahydrate {[Ru(bpy)3 ]2+ .Cl.9H2 O} (RBMN) and Ruthenium(II) tris (2,2'-bipyridyl) monochloride septahydrate {[Ru(bpy)3 ]2+ .Cl.7H2 O}(RBMS) were crystallized from the filtrate. The crystal structure of complexes RBMN and RBMS were determined by a single-crystal X-ray diffraction methods and it showed that chlorine anion lies at the crystallographic axis and forms a halogen hydrogen-bonded organic framework (XHOF) to provide the stability. In comparison with similar structures in Cambridge Crystallographic Data Center (CCDC) revealed that the nature of the XHOF framework and the layered packing are conserved. The compounds showed excellent cytotoxic ability (against L6 cells) and the nitro blue tetrazolium (NBT) assay upon irradiation to light revealed its ability to produce reactive oxygen species (ROS). The presence of partially occupied water molecules in the layered organization within the crystal packing mimics the release of ROS resulting in cytotoxicity. The structural results together with the biological data make these complexes interesting candidates for potential photosensitizers for PDT applications.
Collapse
Affiliation(s)
- Naveen Y Puttaswamy
- Department of Studies and Research in Physics, Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Centre for Research and Innovation, Adichunchanagiri University, Karnataka, BG Nagara, India
| | - Pranami Mahanta
- Department of Chemistry, Department of Applied Sciences, Gauhati University, Guwahati, Assam, India
| | - Pranjit Sarma
- Department of Chemistry, Department of Applied Sciences, Gauhati University, Guwahati, Assam, India
| | - Chitrani Medhi
- Department of Chemistry, Department of Applied Sciences, Gauhati University, Guwahati, Assam, India
| | - Sanaa Mohammed Abdu Kaid
- Department of Studies and Research in Physics, Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Centre for Research and Innovation, Adichunchanagiri University, Karnataka, BG Nagara, India
| | - Byrappa Kullaiah
- Department of Studies and Research in Physics, Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Centre for Research and Innovation, Adichunchanagiri University, Karnataka, BG Nagara, India
| | - Debajani Basumatary
- Department of Chemistry, Department of Applied Sciences, Gauhati University, Guwahati, Assam, India
| | - Babu A Manjasetty
- Department of Studies and Research in Physics, Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Centre for Research and Innovation, Adichunchanagiri University, Karnataka, BG Nagara, India
| |
Collapse
|
4
|
Wang ZF, Huang XQ, Wu RC, Xiao Y, Zhang SH. Antitumor studies evaluation of triphenylphosphine ruthenium complexes with 5,7-dihalo-substituted-8-quinolinoline targeting mitophagy pathways. J Inorg Biochem 2023; 248:112361. [PMID: 37659141 DOI: 10.1016/j.jinorgbio.2023.112361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Both ruthenium-containing complexes and 8-quinolinoline compounds have emerged as a potential novel agent for malignant tumor therapy. Here, three triphenylphosphine ruthenium complexes, [Ru(ZW1)(PPh3)2Cl2] (PPh3 = triphenylphosphine) (RuZ1), [Ru(ZW2)(PPh3)2Cl2] (RuZ2) and [Ru(ZW2)2(PPh3)Cl2]·CH2Cl2 (RuZ3) bearing 5,7-dichloro-8-quinolinol (H-ZW1) and 5,7-dichloro-8-hydroxyquinaldine (H-ZW2), have been synthesized, characterized and tested for their anticancer potential. We showed that triphenylphosphine ruthenium complexes RuZ1-RuZ3 impaired the cell viability of ovarian adenocarcinoma cisplatin-resistant SK-OV-3/DDP (SKO3CR) and SK-OV-3 (SKO3) cancer cells with greater selectivity and specificity than cisplatin. In addition, RuZ1-RuZ3 show higher excellent cytotoxicity than cisplatin towards SKO3CR cells, with IC50 values of 9.66 ± 1.08, 4.05 ± 0.67 and 7.18 ± 0.40 μM, respectively, in which the SKO3CR cells was the most sensitive to RuZ1-RuZ3. Depending on the substituent type, the antiproliferative ability of RuZ1-RuZ3 followed the trend: -CH3 > -H. However, RuZ1-RuZ3 have no obvious toxicity to normal cell HL-7702. Besides, RuZ1 and RuZ2 could induce mitophagy related-apoptosis pathways through suppression of mitochondrial membrane potential (ΔΨm), accumulation of [Ca2+] and reactive oxygen species (ROS), and regulation of LC3 II/LC3 I, Beclin-1, P62, FUNDC1, PINK1, Parkin, cleaved-caspase-3, caspase-9 and cytochrome c signaling pathway, and hindering the preparation of mitochondrial respiration complexes I and IV and ATP levels. Mechanistic study revealed that RuZ1 and RuZ2 induce apoptosis in SKO3CR cells via mitophagy related-apoptosis pathways induction and energy (ATP) generation disturbance. Taken together, the studied triphenylphosphine ruthenium complexes RuZ1-RuZ3 are promising chemotherapeutic agents with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yu Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China.
| |
Collapse
|
5
|
Arora V, Yasmin E, Tanwar N, Hathwar VR, Wagh T, Dhole S, Kumar A. Pincer–Ruthenium-Catalyzed Reforming of Methanol─Selective High-Yield Production of Formic Acid and Hydrogen. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Eileen Yasmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Tushar Wagh
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari Pune, Pune, Maharashtra 411026, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari Pune, Pune, Maharashtra 411026, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Luo M, Zhang JC, Yin H, Wang CM, Xie L, Li KP, Goto M, Morris-Natschke SL, Lee KH, Zhang JH, Zhang YM, Zhang XR. Palladium (II), platinum (II) and silver (I) complexes with oxazolines: Their synthesis, characterization, DFT calculation, molecular docking and antitumour effects. J Inorg Biochem 2023; 239:112048. [PMID: 36496289 DOI: 10.1016/j.jinorgbio.2022.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Six new Pd(II), Pt(II) and Ag(I) complexes, (1);{Pd (L1)]2C6H4}2Cl4} (2); Pt(L2)(DMSO)Cl; 3; {PtL5]2C6H4}2·PhCOO-⋅11NO3-; 4; {[Pt(L4)]2C6H4}; the binuclear cyclometalated complex the polymer chain (5); {[PtL5]C6H4}·NO3-}; and the polymeric silver species (6); Zn(L6)2·AgNO3·CHCl3 were synthesized and thoroughly characterized using X-ray diffraction and spectroscopic techniques (L1=(S,S)-1,4-i-PrOx]2C6H4}2Cl4, L2=Di(2,2-bis(4R-isopropyl-4,5-dihydro-oxazol-2-yl)acetonitrile) zinc (II) (BR1);L3= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene (AR2); L4= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene,L5=1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)-benzene,L6=Di(2,2-bis(4S-isopropyl-4,5-dihydrooxazol-2-yl)acetonitrile) zinc (II). Complexes 1-6 showed cytotoxic effects against human tumour cell lines, including a multidrug-resistant subline. Oxazoline and Pd complex 1 induced apoptosis in A549 cells. DFT calculations were also performed to exhibit the excellent bioactivity of complex 1 against A549, MDA-MB-231, and KB cells. Complex 1, with the best docking score and a stable interaction network within the binding site of the G-quadruplex, could stably interact with the G-quadruplex. Additionally, complex 1 was further used in the animal experiment of human lung adenocarcinoma cells in nude mice. By comparing with the model control group, the tumour volume, relative tumour volume and relative tumour proliferation rate T/C decreased significantly in the cisplatin group and compound 1 (complex 1) group.
Collapse
Affiliation(s)
- Mei Luo
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Intelligent Manufacturing Institute of HFUT, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jing-Cheng Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Cheng-Ming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Lan Xie
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kang-Po Li
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40447, Taiwan.
| | - Jia-Hai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan-Min Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xue-Ru Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
7
|
Sahu G, Patra SA, Lima S, Das S, Görls H, Plass W, Dinda R. Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death. Chemistry 2023; 29:e202202694. [PMID: 36598160 DOI: 10.1002/chem.202202694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.,Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
8
|
Nandi PG, Thombare P, Prathapa SJ, Kumar A. Pincer-Cobalt-Catalyzed Guerbet-Type β-Alkylation of Alcohols in Air under Microwave Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Prasad Thombare
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
9
|
Lovison D, Alessi D, Allegri L, Baldan F, Ballico M, Damante G, Galasso M, Guardavaccaro D, Ruggieri S, Melchior A, Veclani D, Nardon C, Baratta W. Enantioselective Cytotoxicity of Chiral Diphosphine Ruthenium(II) Complexes Against Cancer Cells. Chemistry 2022; 28:e202200200. [PMID: 35394095 PMCID: PMC9322675 DOI: 10.1002/chem.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/09/2022]
Abstract
The chiral cationic complex [Ru(η1 -OAc)(CO)((R,R)-Skewphos)(phen)]OAc (2R ), isolated from reaction of [Ru(η1 -OAc)(η2 -OAc)(R,R)-Skewphos)(CO)] (1R ) with phen, reacts with NaOPiv and KSAc affording [RuX(CO)((R,R)-Skewphos)(phen)]Y (X=Y=OPiv 3R ; X=SAc, Y=OAc 4R ). The corresponding enantiomers 2S -4S have been obtained from 1S containing (S,S)-Skewphos. Reaction of 2R and 2S with (S)-cysteine and NaPF6 at pH=9 gives the diastereoisomers [Ru((S)-Cys)(CO)(PP)(phen)]PF6 (PP=(R,R)-Skewphos 2R -Cys; (S,S)-Skewphos 2S -Cys). The DFT energetic profile for 2R with (S)-cysteine in H2 O indicates that aquo and hydroxo species are involved in formation of 2R -Cys. The stability of the ruthenium complexes in 0.9 % w/v NaCl solution, PBS and complete DMEM medium, as well as their n-octanol/water partition coefficient (logP), have been evaluated. The chiral complexes show high cytotoxic activity against SW1736, 8505 C, HCT-116 and A549 cell lines with EC50 values of 2.8-0.04 μM. The (R,R)-Skewphos derivatives show higher cytotoxicity compared to their enantiomers, 4R (EC50 =0.04 μM) being 14 times more cytotoxic than 4S against the anaplastic thyroid cancer 8505 C cell line.
Collapse
Affiliation(s)
- Denise Lovison
- Dipartimento di Scienze Agroalimentari, Ambientali e AnimaliUniversità di UdineVia Cotonificio 10833100UdineItaly
| | - Dario Alessi
- Dipartimento di Scienze Agroalimentari, Ambientali e AnimaliUniversità di UdineVia Cotonificio 10833100UdineItaly
| | - Lorenzo Allegri
- Dipartimento di Area Medica - Istituto di Genetica MedicaUniversità di UdineVia Chiusaforte, F333100UdineItaly
| | - Federica Baldan
- Dipartimento di Area Medica - Istituto di Genetica MedicaUniversità di UdineVia Chiusaforte, F333100UdineItaly
| | - Maurizio Ballico
- Dipartimento di Scienze Agroalimentari, Ambientali e AnimaliUniversità di UdineVia Cotonificio 10833100UdineItaly
| | - Giuseppe Damante
- Dipartimento di Area Medica - Istituto di Genetica MedicaUniversità di UdineVia Chiusaforte, F333100UdineItaly
| | - Marilisa Galasso
- Centro di Ricerca LURMLaboratorio Interdipartimentale di Ricerca MedicaUniversità di Verona, Policlinico G.B. RossiP.L.A. Scuro 1037134VeronaItaly
| | - Daniele Guardavaccaro
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie, 1537134VeronaItaly
| | - Silvia Ruggieri
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie, 1537134VeronaItaly
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e ArchitetturaUniversità di UdineVia Cotonificio 10833100UdineItaly
| | - Daniele Veclani
- Dipartimento Politecnico di Ingegneria e ArchitetturaUniversità di UdineVia Cotonificio 10833100UdineItaly
| | - Chiara Nardon
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie, 1537134VeronaItaly
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e AnimaliUniversità di UdineVia Cotonificio 10833100UdineItaly
| |
Collapse
|
10
|
Dorairaj DP, Haribabu J, Chang Y, Echeverria C, Hsu SCN, Karvembu R. Pd (II)‐PPh
3
complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and
in vitro
anti‐proliferative activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli India
- Facultad de Medicina Universidad de Atacama Copiapo Chile
| | - Yu‐Lun Chang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | | | - Sodio C. N. Hsu
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli India
| |
Collapse
|
11
|
Akhter S, Usman M, Arjmand F, Tabassum S. Synthesis, structural characterization, in vitro comparative DNA/RNA binding, and computational studies of half-sandwich Ru (II)(ƞ6-p-cymene) aminoquinoline complex. Polyhedron 2022; 213:115618. [DOI: 10.1016/j.poly.2021.115618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
da Silva MM, Ribeiro GH, de Camargo MS, Ferreira AG, Ribeiro L, Barbosa MIF, Deflon VM, Castelli S, Desideri A, Corrêa RS, Ribeiro AB, Nicolella HD, Ozelin SD, Tavares DC, Batista AA. Ruthenium(II) Diphosphine Complexes with Mercapto Ligands That Inhibit Topoisomerase IB and Suppress Tumor Growth In Vivo. Inorg Chem 2021; 60:14174-14189. [PMID: 34477373 DOI: 10.1021/acs.inorgchem.1c01539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.
Collapse
Affiliation(s)
- Monize M da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Gabriel H Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Mariana S de Camargo
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Antônio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Leandro Ribeiro
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Marília I F Barbosa
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Victor M Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Silvia Castelli
- Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy
| | | | - Rodrigo S Corrêa
- Departamento de Química, Universidade Federal de Ouro Preto, CEP 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Arthur B Ribeiro
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | | | - Saulo D Ozelin
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | - Denise C Tavares
- Universidade de Franca, CEP 14404-600, Franca, São Paulo, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
13
|
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|