1
|
Chi J, Hu J, Jin R, Zhou S, Wen S, Jiang Q, Ju P, Zhai X. Novel ZIF-67-derived Co 3O 4 hollow nanocages as efficient nanozymes with intrinsic dual enzyme-mimicking activities for colorimetric sensing. Mikrochim Acta 2025; 192:266. [PMID: 40153042 DOI: 10.1007/s00604-025-07112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/15/2025] [Indexed: 03/30/2025]
Abstract
Nanozymes with multifaceted functionalities have accrued substantial interest as they provide an expanded spectrum of applications in comparison to their single-active nanozymes. In this endeavor, novel Co3O4 hollow nanocages (COHNs) derived from ZIF-67 were crafted adorned with the exceptional quality of dual-enzymatic prowess by employing a simple co-precipitation and pyrolysis technique, all the while meticulously exploring the intricacies of the catalyst mechanism. Kinetic analyses ascertained that the catalytic behavior of COHNs adhered to the archetypal dynamics of Michaelis-Menten, displaying a higher affinity for 3,3',5,5'-tetramethylbenzidine (TMB) compared to natural enzymes. Leveraging the exceptional peroxidase- and oxidase-mimicking activity of the COHNs, a visual colorimetric assay platform was established for the detection of H2O2, ascorbic acid (AA), and acid phosphatase (ACP), all of which showed high selectivity and good sensitivity. Significantly, by harnessing the enzyme mimic property of COHNs, quantitative detection of H2O2, AA, and ACP unveiled astoundingly low detection limits of 0.0046 µM, 0.15 µM, and 0.0068 mU∙mL-1, respectively. Moreover, the successful detection application in real samples attested to the superior stability and anti-interference ability of the colorimetric sensing system. This study not only provides a novel nanozyme boasting remarkably dual-enzymatic prowess, but also pioneers a rapid and sensitive method for environmental analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Jingtian Chi
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, P.R. China
- Key Laboratory of Advanced Marine Materials, CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, P.R. China
| | - Jingfei Hu
- NICU, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Qingdao, 266000, P.R. China
| | - Rongrong Jin
- Shandong Provincial Weifang Eco-Environment Monitoring Center, Weifang, 261044, P.R. China
| | - Shanding Zhou
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, P.R. China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, P.R. China
| | - Siyu Wen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, P.R. China
| | - Quantong Jiang
- Key Laboratory of Advanced Marine Materials, CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, P.R. China
| | - Peng Ju
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, P.R. China.
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, P.R. China.
| | - Xiaofan Zhai
- Key Laboratory of Advanced Marine Materials, CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, P.R. China.
- Institute of Marine Corrosion and Protection, Guangxi Academy of Sciences, Nanning, No. 98 Dalin Road, 530007, P.R. China.
| |
Collapse
|
2
|
Anwar F, Varghese AM, Kuppireddy S, Gotzias A, Khaleel M, Wang K, Karanikolos GN. High-Purity Ethylene Production from Ethane/Ethylene Mixtures at Ambient Conditions by Ethane-Selective Fluorine-Doped Activated Carbon Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8619-8633. [PMID: 39862162 PMCID: PMC11803616 DOI: 10.1021/acsami.4c20772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation. Consequently, an equilibrium ethane/ethylene selectivity of as high as 3.9 at 298 K and 1 bar was achieved. Furthermore, polymer-grade ethylene (purity >99.99%) with a productivity of 1.6 mmol/g was obtained in a breakthrough run at ambient conditions from a binary ethane/ethylene (1/9 v/v) mixture. The ethane selectivity of the fluorine-doped carbons was further elucidated through Monte Carlo simulations and density contours of the adsorbed components. In addition to the high ethane selectivity, the adsorbents exhibited a hydrophobic surface, high stability under moisture, and excellent regenerability over multiple adsorption-desorption cycles under both equilibrium and dynamic conditions, demonstrating a sustainable performance.
Collapse
Affiliation(s)
- Fahmi Anwar
- Department
of Chemical & Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, UAE
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O Box 127788, Abu
Dhabi 127788, UAE
- Renewable
and Sustainable Energy Research Center, Technology Innovation Institute (TII), P.O. Box 9639, Masdar City, Abu Dhabi 9639, UAE
| | - Anish Mathai Varghese
- Department
of Chemical & Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, UAE
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O Box 127788, Abu
Dhabi 127788, UAE
| | - Suresh Kuppireddy
- Renewable
and Sustainable Energy Research Center, Technology Innovation Institute (TII), P.O. Box 9639, Masdar City, Abu Dhabi 9639, UAE
| | - Anastasios Gotzias
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research Demokritos, Athens 15310, Greece
| | - Maryam Khaleel
- Department
of Chemical & Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, UAE
- Research
and Innovation Center for CO2 and H2 (RICH), Khalifa University, P.O.
Box 127788, Abu Dhabi 127788, UAE
| | - Kean Wang
- Food, Chemical
and BioTechnology Cluster, Singapore Institute
of Technology, 10 Dover Drive, Singapore 138683
| | | |
Collapse
|
3
|
Fu XP, Liu QY, Wang YL. Metal-Organic Framework Featuring Cubic Caged Structures for One-Step Ethylene Purification from Ethylene/Ethane Mixtures. Inorg Chem 2024; 63:12309-12315. [PMID: 38889441 DOI: 10.1021/acs.inorgchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Separation of C2H6/C2H4 mixtures is of significant importance in the chemical industry but remains a challenge due to the physicochemical similarities of C2H6 and C2H4. Herein, a metal-organic framework (MOF), [Zn4(μ4-O)(PCTF)3]n (Zn-PCTF) (PCTF2-= 5-trifluoromethyl-1H-pyrazole-4-carboxylic), is provided for the removal of C2H6 from C2H6/C2H4 mixtures. Zn-PCTF displays a three-dimensional framework featuring one-dimensional pore channels with periodic bottleneck segments. The well-balanced C2H6 adsorption capacity (79.0 cm3 g-1 at 298 K) and C2H6/C2H4 selectivity (1.8) for Zn-PCTF under ambient conditions boost Zn-PCTF with highly promising potentials for efficient purification of C2H4 from C2H6/C2H4 mixtures, which is verified by the dynamic column breakthrough experiments. The well-matched caged pores and suitable pore chemistry (particularly the presence of abundant Lewis base sites (N, O, and F) on the pore surfaces) for C2H6 account for the high-performance C2H6/C2H4 separation of Zn-PCTF unveiled by computational simulations.
Collapse
Affiliation(s)
- Xing-Ping Fu
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan ,Fujian 354300, P. R. China
| | - Qing-Yan Liu
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan ,Fujian 354300, P. R. China
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang ,Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang ,Jiangxi 330022, P. R. China
| |
Collapse
|
4
|
Si X, Yao Q, Pan X, Zhang X, Zhang C, Li Z, Duan W, Hou J, Huang X. Mesoporous MOF Based on a Hexagonal Bipyramid Co 8-Cluster: High Catalytic Efficiency on the Cycloaddition Reaction of CO 2 with Bulky Epoxides. Inorg Chem 2023; 62:15006-15014. [PMID: 37672651 DOI: 10.1021/acs.inorgchem.3c01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A mesoporous cobalt-based metal-organic framework (LCU-606) was synthesized based on a hexagonal bipyramid Co8(μ4-O)3 cluster and an N,N,N',N'-tetrakis-(4-benzoic acid)-1,4-phenylenediamine ligand (H4TBAP). LCU-606 featuring large pore diameters of 21.7 Å and exposed Lewis-acid metal sites could serve as an excellent heterogeneous catalyst for CO2 cycloaddition reaction with various epoxide substrates under mild conditions (1 atm CO2, 60 °C, and solvent free). In particular, when extending the substrates to bulkier ones, LCU-606 still shows high catalytic efficiency on account of the large pore aperture. Also, LCU-606 demonstrates high recyclability and stability in consecutive catalytic runs. Therefore, the high efficiency, recyclability, and generality on CO2 catalytic cycloaddition make LCU-606 a very promising heterogeneous catalyst for CO2 chemical fixation.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Chenglu Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Zhanqiang Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Jinle Hou
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| |
Collapse
|
5
|
Guo FJ, Yang N, Li HX, Fang H, Xue DX. Adenine-mediated Amide-containing Metal-organic Framework toward One-step Ethylene Purification from a Ternary Mixture. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Anwar F, Khaleel M, Wang K, Karanikolos GN. Selectivity Tuning of Adsorbents for Ethane/Ethylene Separation: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fahmi Anwar
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Center for Catalysis and Separations (CeCaS), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
| | - Maryam Khaleel
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Center for Catalysis and Separations (CeCaS), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Research and Innovation Center for CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
| | - Kean Wang
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Center for Catalysis and Separations (CeCaS), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Center for Catalysis and Separations (CeCaS), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Research and Innovation Center for CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, 127788 Abu Dhabi, UAE
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| |
Collapse
|
8
|
Zhang Y, Zhou S, Liu X, Zhang P, Yan Z, Hu J, Wei Z, Chen L, Wang J, Deng S. An ethane-trapping Zn (II) cluster-based metal-organic framework with suitable pockets for efficient ethane/ethylene separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Jiang C, Wang X, Ouyang Y, Lu K, Jiang W, Xu H, Wei X, Wang Z, Dai F, Sun D. Recent advances in metal-organic frameworks for gas adsorption/separation. NANOSCALE ADVANCES 2022; 4:2077-2089. [PMID: 36133454 PMCID: PMC9418345 DOI: 10.1039/d2na00061j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
The unique structural advantage of metal-organic frameworks (MOFs) determines the great prospect and developability in gas adsorption and separation. Both ligand design and microporous engineering based on crystal structure are significant lever for coping with new application exploration and requirements. Focusing on the designable pore and modifiable frameworks of MOFs, this review discussed the recent advances in the field of gas adsorption and separation, and analyzed the host-guest interaction, structure-performance relations, and the adsorption/separation mechanism from ligand design, skeleton optimization, metal node regulation, and active sites construction. Based on the function-oriented perspective, we summarized the main research recently, and made an outlook based on the focus of microporous MOFs that require further attention in the structure design and industrial application.
Collapse
Affiliation(s)
- Chuanhai Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Yuguo Ouyang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kebin Lu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Weifeng Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Huakai Xu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaofei Wei
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhifei Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
10
|
Hu P, Hu J, Wang H, Liu H, Zhou J, Liu Y, Wang Y, Ji H. One-Step Ethylene Purification by an Ethane-Screening Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15195-15204. [PMID: 35315657 DOI: 10.1021/acsami.1c25005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient purification of ethylene (C2H4) from ethane (C2H6) is a crucial but daunting task for the chemical industry given their similar physical natures and molecular dimensions. Reversed capture of C2H6 from C2H6/C2H4 dual-mixtures can be expected to directly yield high-purity C2H4 through a one-step separation unit, but it remains a daunting challenge. Here, we skillfully target an unusual "electrostatic-driven linker microrotation" (EDLM) in a Zr-MOF through coupling dual-ligands having electron-withdrawing/donating groups (e.g., F and CH3 motifs). EDLM triggered microrotation of linker geometry and screening sites not only enhanced structural rigidity and hydrophobic nature, etc., but also effectively purified C2H4 through reversely trapping C2H6. Under ambient conditions, 1 kg of activated 2 adsorbents directly produces 7.2 L of C2H4 with over 99.9%+ purity in a single breakthrough operation starting from the equimolar C2H6/C2H4 cracked mixtures. Geometrical models and simulations have revealed that EDLM-derived H-bonding interaction and microrotation of linker geometry, synergistically customized C2H6-selective screening sites and pore inert for reversed C2H6 capture and improved surface hydrophobicity. Adsorption isotherms, modeling simulations, and breakthrough tests based on pressure swing adsorption (PSA) conditions have jointly elucidated the underlying separation properties for C2H4 purification. The enhanced hydrophobic nature, cycling durability, and separation property awarded 2 a new benchmark adsorbent to purify the olefin/paraffin mixtures.
Collapse
Affiliation(s)
- Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jialang Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Yao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Yongqing Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
11
|
Zhou P, Yue L, Wang X, Fan L, Chen DL, He Y. Improving Ethane/Ethylene Separation Performance of Isoreticular Metal-Organic Frameworks via Substituent Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54059-54068. [PMID: 34730324 DOI: 10.1021/acsami.1c17818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preferential capture of ethane (C2H6) over ethylene (C2H4) presents a very cost-effective and energy-saving means applied to adsorptive separation and purification of C2H4 with a high product purity, which is however challenged by low selectivity originating from their similar molecular sizes and physical properties. Substituent engineering has been widely employed for selectivity regulation and improvement, but its effect on C2H6/C2H4 separation has been rarely explored to date. In this work, four isoreticular coordination framework compounds based on 5-(pyridin-3-yl)isophthalate ligands bearing different substituents were rationally constructed. As revealed by isotherm measurements, thermodynamic studies, and IAST computations, they exhibited promising utility for C2H6/C2H4 separation with moderate adsorption heat and a high uptake amount at a relatively low-pressure domain. Furthermore, the C2H6/C2H4 separation potential can be finely tuned and optimized via purposeful substituent alteration. Most remarkably, functionalization with a nonpolar methyl group yielded an improved separation efficiency compared to its parent compound. This work offers a good reference value for enhancing the C2H6/C2H4 separation efficiency of MOFs by engineering the pore microenvironment and dimensions via substituent manipulation.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
12
|
Yan YT, Wang CY, Zheng LN, Wu YL, Liu J, Wu WP, Zhang WY, Wang YY. A new multi-functional Cu( ii)-organic framework as a platform for selective carbon dioxide chemical fixation and separation of organic dyes. CrystEngComm 2021. [DOI: 10.1039/d1ce01274f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional metal–organic framework {[Cu2(HL)(H2O)2]·NMP·2H2O}n was synthesized. It shows efficient catalytic performance for the chemical fixation of CO2 and exhibits selective sorption towards the rhodamine B dye.
Collapse
Affiliation(s)
- Yang-Tian Yan
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chen-Yang Wang
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Li-Na Zheng
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Yun-long Wu
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Wei-Ping Wu
- College of Chemistry and Environmental Engineering and Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|