1
|
Calisto VFM, De Abreu HA, Diniz R. Experimental and theoretical structural investigation of an ionic Nd coordination polymer. Acta Crystallogr C Struct Chem 2024; 80:620-626. [PMID: 39229749 DOI: 10.1107/s2053229624008428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Research concerning coordination polymers has been intense due to their significant variability and structural stability. With this in mind, an ionic neodymium coordination polymer was synthesized, composed of an anionic one-dimensional polymer interconnected to a cationic three-dimensional porous polymer, poly[dodecaaquabis(μ-pyridine-4-carbohydrazide-κ2N:O)bis(μ2-4-sulfobenzoato-κ2O:O')bis(μ3-4-sulfobenzoato-κ3O:O':O'')trineodymium(III)] catena-poly[aquabis(μ-pyridine-4-carbohydrazide-κ2N:O)bis(μ2-4-sulfobenzoato-κ2O:O')neodymium(III)] 4.33-hydrate, {[Nd3(C7H4O5S)4(C6H7N3O)2(H2O)12][Nd(C7H4O5S)2(C6H7N3O)2(H2O)]·4.33H2O}n. The ligands used were 4-sulfobenzoate (PSB) and pyridine-4-carbohydrazide, popularly known as isoniazid (INH), an antibiotic drug. The compound crystallizes in the monoclinic space group C2/c, with Z = 4. Solid-state calculations suggest that the crystal structure is mainly stabilized by hydrogen bonds, i.e. O-H...O and N-H...O interactions among the polymers, and by van der Waals interactions involving the organic side chains. This net is tetragonal, 2-nodal 3,4-connected, and can be described as the dmd (sqc 528) type.
Collapse
Affiliation(s)
- Victoria F M Calisto
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Heitor A De Abreu
- Grupo de Pesquisa em Química Inorgânica Teórica (GPQIT), Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Diniz
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Abbas M, Murari B, Sheybani S, Joy M, Balkus KJ. Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare-Earth Metal-Organic Frameworks (MOFs). MATERIALS (BASEL, SWITZERLAND) 2024; 17:4213. [PMID: 39274603 PMCID: PMC11396249 DOI: 10.3390/ma17174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Tuning a material's hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal-organic frameworks (MOFs) can make them hydrophobic. In this work, the linker bis(trifluoromethyl)terephthalic acid (TTA) was used to make highly fluorinated MOFs. The reaction of the TTA and RE3+ (RE: Y, Gd, or Eu) ions resulted in the primitive cubic structure (pcu) exhibiting RE dimer nodes (RE-TTA-pcu). The crystal structure of the RE-TTA-pcu was obtained. The use of the 2-fluorobenzoic acid in the synthesis resulted in fluorinated hexaclusters in the face-centered cubic (fcu) framework (RE-TTA-fcu), analogous to the UiO-66 MOF. The RE-TTA-fcu has fluorine on the linker as well as in the cluster. The MOFs were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and contact angle measurements.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Bhargavasairam Murari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Monu Joy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|
3
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Yu X, Chang W, Zhang H, Cai Z, Yang Y, Zeng C. Visual and Real-Time Monitoring of Cd 2+ in Water, Rice, and Rice Soil with Test Paper Based on [2 + 2] Lanthanide Clusters. Inorg Chem 2023; 62:6387-6396. [PMID: 37027515 DOI: 10.1021/acs.inorgchem.3c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Cadmium ions (Cd2+) are highly toxic to animal and human health, especially through the drinking of Cd2+-contaminated water and eating Cd2+-contaminated rice. Therefore, accurate detection of Cd2+ in water, rice, and rice soil is urgent. In this work, two [2 + 2] lanthanide clusters of Tb2Tb2 and Eu2Eu2 were synthesized and characterized in detail. Interestingly, Tb2Tb2 is a rapid sensor for Cd2+ through luminescence "turn-off". Further studies show that Tb2Tb2 is a highly sensitive and selective sensor toward Cd2+ in water, rice supernatants, and rice soil supernatants, with a very short response time of 20 s. The limit of detection (LOD) in the above three real samples is as low as 0.0112, 1.1240, and 0.1124 ppb, respectively, which is lower than the national standards for food safety in China (GB 2762-2022). More interestingly, a portable sensing device of test paper based on Tb2Tb2 is developed with a facile method, which shows visible, highly sensitive, and selective sensing toward Cd2+ in real samples of water, rice supernatants, and rice soil supernatants. Tb2Tb2 and its sensing device of test paper are an on-site analysis sensor for potentially non-expert users, especially for people in remote rural areas.
Collapse
Affiliation(s)
- Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wenting Chang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hua Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ziyan Cai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
5
|
Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs. Nat Commun 2023; 14:981. [PMID: 36813785 PMCID: PMC9947006 DOI: 10.1038/s41467-023-36576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform's relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.
Collapse
|
6
|
Vizuet JP, Mortensen ML, Lewis AL, Wunch MA, Firouzi HR, McCandless GT, Balkus KJ. Fluoro-Bridged Clusters in Rare-Earth Metal-Organic Frameworks. J Am Chem Soc 2021; 143:17995-18000. [PMID: 34677056 DOI: 10.1021/jacs.1c10493] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.
Collapse
Affiliation(s)
- Juan P Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Abigail L Lewis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Melissa A Wunch
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| |
Collapse
|