1
|
Chen M, Liu FM, Zhao MY, Qian X, Liu L, Wan R, Yuan ZY, Li CS, Niu QY. Rational Synthesis of Spongy Fe 3N@N-Doped Carbon Nanorods with Controlled Topography and Porosity for Enhanced Energy Storage Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24017-24028. [PMID: 39468400 DOI: 10.1021/acs.langmuir.4c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Iron nitrides with the merits of high theoretical capacities, cost-effectiveness, and good electronic/ionic conductivity have been recognized as attractive anode candidates for lithium-ion batteries (LIBs). Carbon compositing, pore engineering, and nanostructure construction have proved to be effective strategies to prepare high-performance metal nitride anodes for LIBs. Herein, we synthesized a series of Fe3N-embedded and N-doped carbon nanorods (Fe3N@NCNR) with a hierarchical porous system and controllable topography by metal-catalyzed graphitization-nitridization of the Fe(III)-triazole framework (Fe-MOF) and thermal evaporation of the triblock copolymer F127 template assembled in Fe-MOF via hydrogen bonding interaction, followed by the air oxidation and urea-assisted ammonolysis processes. The Fe3N@NCNR as anodes for LIBs display extraordinary lithium storage capabilities with a high reversible capacity of 830 mA h g-1 at 0.1 C, a good rate performance of 576 mAh g-1 at 5 C, and a long-term cycling stability of 742 mA h g-1 over 600 cycles at 1 C. Such outstanding performance benefits from the spongy carbon nanorods with rich macropores for rapid electronic/ionic transport and effective accommodation of electrode volume expansion, abundant N-doped meso-/microporous carbon for the additional storage of Li+ via capacitive effect, and the efficient utilization of Fe3N nanoparticles uniformly distributed through carbon nanorods. Importantly, this work introduces an effective strategy to construct superior performance nitride anodes from MOF surfactants based on hydrogen bonding-driven interface self-assembly and provides insight into the preparation of highly efficient nanoarchitectures for Li+ storage.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Feng-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ming-Yang Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xing Qian
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong Wan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chun-Sheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing-Yuan Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Zhang D, Zhang C, Xu H, Huo Z, Shi X, Liu X, Liu G, Yu C. Facilely Fabricating F-Doped Fe 3N Nanoellipsoids Grown on 3D N-Doped Porous Carbon Framework as a Preeminent Negative Material. Molecules 2024; 29:959. [PMID: 38474473 DOI: 10.3390/molecules29050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Transition metal nitride negative electrode materials with a high capacity and electronic conduction are still troubled by the large volume change in the discharging procedure and the low lithium ion diffusion rate. Synthesizing the composite material of F-doped Fe3N and an N-doped porous carbon framework will overcome the foregoing troubles and effectuate a preeminent electrochemical performance. In this study, we created a simple route to obtain the composite of F-doped Fe3N nanoellipsoids and a 3D N-doped porous carbon framework under non-ammonia atmosphere conditions. Integrating the F-doped Fe3N nanoellipsoids with an N-doped porous carbon framework can immensely repress the problem of volume expansion but also substantially elevate the lithium ion diffusion rate. When utilized as a negative electrode for lithium-ion batteries, this composite bespeaks a stellar operational life and rate capability, releasing a tempting capacity of 574 mAh g-1 after 550 cycles at 1.0 A g-1. The results of this study will profoundly promote the evolution and application of transition metal nitrides in batteries.
Collapse
Affiliation(s)
- Dan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chunyan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Huishi Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhe Huo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinyu Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaodi Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guangyin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chuang Yu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Yao Y, Wu J, Feng Q, Zeng K, Wan J, Zhang J, Mao B, Hu K, Chen L, Zhang H, Gong Y, Yang K, Zhou H, Huang Z, Li H. Spontaneous Internal Electric Field in Heterojunction Boosts Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Theory, Experiment, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302015. [PMID: 37222119 DOI: 10.1002/smll.202302015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Heterojunctions are a promising class of materials for high-efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (* O2 ⇋* OOH⇋* O⇋* OH). This study proposes the electron-/hole-rich catalytic center theory (e/h-CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron-/hole-rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h-CCT theory, this study reveals the randomly synthesized heterostructural Fe3 N-FeN0.0324 (Fex N@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3 N-FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron-/hole-rich interface. The rechargeable ZABs with Fex N@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm-2 , high specific capacity of 766.20 mAh g-1 at 5 mA cm-2 , and excellent stability for over 300 h.
Collapse
Affiliation(s)
- Yong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiexing Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiaoxia Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kui Zeng
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jing Wan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Boyang Mao
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Kui Hu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Liming Chen
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yi Gong
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huanxin Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| |
Collapse
|
4
|
Liu H, Zhang D, Holmes SM, D'Agostino C, Li H. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chem Sci 2023; 14:9000-9009. [PMID: 37655027 PMCID: PMC10466308 DOI: 10.1039/d3sc01827j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood. Herein, we propose a new theoretical framework to uncover the ORR mechanism of ZrN by integrating surface state analysis, electric field effect simulations, and pH-dependent microkinetic modelling. The ZrN surface was found to be covered by ∼1 monolayer (ML) HO* under ORR operating conditions, which can accommodate the adsorbates in a bridge-site configuration for the ORR. Electric field effect simulations demonstrate that O* adsorption on a 1 ML HO* covered surface only induces a consistently small dipole moment change, resulting in a moderate bonding strength that can account for the superior activity. Based on the identified surface state of ZrN and electric field simulations, pH-dependent microkinetic modelling found that ZrN reaches the Sabatier optimum of the kinetic ORR volcano model in alkaline media, with the simulated polarization curves being in excellent agreement with the experimental data of ZrN and Pt/C. Finally, we show that this theoretical framework can lead to a good explanation for the alkaline oxygen electrocatalysis of other transition metal nitrites such as Fe3N, TiN, and HfN. In summary, this study proposes a new framework to rationalize and design transition metal nitrides for alkaline ORR.
Collapse
Affiliation(s)
- Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester Oxford Road M13 9PL UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna Via Terracini, 28 40131 Bologna Italy
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
5
|
Cui LL, Leng WC, Liu X, Gong Y. Coordination compound-derived Fe 4N/Fe 3N/Fe/CNT for efficient electrocatalytic oxygen evolution: a facile one-step synthesis in the absence of extra nitrogen source. NANOTECHNOLOGY 2022; 33:465402. [PMID: 35834994 DOI: 10.1088/1361-6528/ac810b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
By annealing an Fe(III)-coordination compound (Fe-CC), [FeCl3(Hbta)2] (Hbta = benzotriazole) in the presence of a carbon nanotube precursor (PCNT) template, an Fe4N/Fe3N/Fe/CNT heterostructure was successfully synthesized without an extra nitrogen source. The decomposition of the Hbta in Fe-CC under high-temperature annealing can produce carbon sheets and reduced graphene oxide (rGO), and the presence of CNTs can alleviate the stacking of thein situ-generated carbon materials. Meanwhile, iron nitride nanoparticles (NPs) can be anchored on the carbon sheets, and the anchoring effect efficiently prevents the agglomeration of NPs and increases the amount of active catalytic sites for the oxygen evolution reaction (OER). Fe4N/Fe3N/Fe/CNT shows an excellent OER activity with a Tafel slope of 63 mV dec-1as well as overpotentials of 121 (η10) and 275 mV (η100) at 10 and 100 mA cm-2, respectively - far exceeding commercial RuO2and other catalysts. Density functional theory calculations show that the excellent OER performance of Fe4N/Fe3N/Fe/CNT is associated with the Fe4N/Fe3N heterojunction, which can improve the electron conductivity and boost the electron transfer from N to Fe. The Fe4N/Fe3N/Fe/CNT catalyst exhibits long-term OER activity during 100 h of electrolysis at 20 mA cm-2. This is related to the dual coatings of thein situ-generated thin carbon shell and few-layered rGO on the surface of the iron nitride NPs, which can protect the fast leaching of iron nitride during the OER process. Furthermore, the effects of the annealing temperature, the PCNT template and the heating rate on the calcined products were investigated.
Collapse
Affiliation(s)
- Lei Lei Cui
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wan Cong Leng
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xing Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
6
|
Cui LL, Liu X, Gong Y. Coordination compound-derived Al-doped Fe3O4/C as an efficient electrocatalyst for oxygen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ma XA, Hai Y, Gong Y. Coordination compound-derived La-doped FeS 2/N-doped carbon (NC) as an efficient electrocatalyst for oxygen evolution reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00431c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By annealing/sulfuring of coordination compound (CC) precursors, [LaxFe1-x(H2O)8Fe(CN)6]·2hmt (x = 0, 0.33 and 0.5) (hmt = hexamethylenetetramine), it was synthesized FeS2/N-doped carbon (NC), La-doped FeS2/NC-0.33 and La-doped FeS2/NC-0.5. All of...
Collapse
|
8
|
Li Y, Lin X, Du J. Iron-Facilitated Transformation of Mesoporous Spinel Nanosheets into Oxyhydroxide Active Species in the Oxygen Evolution Reaction. Inorg Chem 2021; 60:19373-19380. [PMID: 34841871 DOI: 10.1021/acs.inorgchem.1c03202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxygen evolution reaction (OER) is critical for many clean energy conversion and storage technologies because it contributes the electrons required for converting renewable electricity into value-added chemicals. Electrocatalysts can promote the sluggish oxygen evolution process involving four-electron transfer. Herein, we prepare mesoporous spinel oxide nanosheets and develop an efficient strategy using Fe substitution to enable mesoporous NiCo2O4 nanosheets to generate superior active centers for the OER. Additionally, the iron substitution also promotes the preoxidation of Co/Ni and facilitates the formation of active species. Raman spectroscopy data reveal that the active species of mesoporous NiCo2O4 nanosheets for the OER is NiCo2O4 itself, and the active species of Fe substitution in NiCo2O4 nanosheets are Ni(Co) oxyhydroxides. Therefore, the iron substitution is beneficial to facilitate the transformation of spinel NiCo2O4 into active Ni(Co) oxyhydroxides under OER conditions. Owing to the mesoporous nanosheet structure and the formation of oxyhydroxide active species, the optimized mesoporous Fe0.2Ni0.8Co2O4 nanosheet catalyst exhibits a low overpotential of 270 mV to deliver a current density of 10 mA cm-2 and a small Tafel slope of 39 mV dec-1 for the oxygen evolution reaction in alkaline media.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinxuan Lin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Du
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Liu X, Gong Y. Fe-Triazole coordination compound-derived Fe 2O 3 nanoparticles anchored on Fe-MOF/N-doped carbon nanosheets for efficient electrocatalytic oxygen evolution reaction. Dalton Trans 2021; 50:16829-16841. [PMID: 34778898 DOI: 10.1039/d1dt03437e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using FeCl3·6H2O and 1,2,4-triazole (Htrz) as starting materials, an Fe coordination compound (CC), [FeCl3(Htrz)3]·H2O, was synthesized at room temperature. Fe-CC can be partially transformed into an Fe metal-organic framework (MOF), [FeCl2(Htrz)], via low-temperature annealing. After sulfurization at 250, 300, and 400 °C, S-doped Fe2O3/N-doped carbon (denoted as NC)/Fe-MOF, FeS2/NC/Fe-MOF, and FeS2/NC were obtained, respectively. S-doped Fe2O3/NC/Fe-MOF shows the best oxygen evolution reaction (OER) catalytic activity in 1 M KOH solution, with overpotentials (η) of 185, 232, and 258 mV required to reach current densities of 10, 30, and 50 mA cm-2, respectively, outperforming commercial RuO2 and most transition-metal oxides reported to date; this high performance is associated with the Fe2O3 nanoparticles (NPs) anchored on the Fe-MOF/NC nanosheets. The Fe-MOF/NC matrix can act as a support to prevent the agglomeration of Fe2O3 NPs. In addition, S-doped Fe2O3/NC/Fe-MOF exhibits long-term OER activity at 20 mA cm-2, which is related to the partial transformation of Fe2O3/Fe-MOF into FeOOH. In addition, density functional theory (DFT) calculations show that the rate-determining step of the OER process at the Fe sites of both Fe2O3 and FeS2 is the formation of Fe*-OH, and the Fe2O3 sites display a lower Gibbs free energy (ΔGmax) of 1.674 eV and a smaller η value of ∼0.444 V. Bader charge, differential charge density mapping, and density of states (DOS) analysis all reveal more charge accumulation at the Fe sites of FeS2 than at the Fe sites of Fe2O3, which is due to the lower electronegativity of S than of O. As a result, the Fe sites of FeS2 show weaker affinity for -OH intermediates, giving rise to inferior OER performance compared with Fe2O3.
Collapse
Affiliation(s)
- Xing Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|