1
|
Mikeska ER, Makoś MZ, Arehart GA, Glezakou VA, Blakemore JD. Distinguishing Desirable and Undesirable Reactions in Multicomponent Systems for Redox Activation of the Uranyl Ion. Inorg Chem 2025; 64:5827-5845. [PMID: 40112202 DOI: 10.1021/acs.inorgchem.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although it has been established that covalent functionalization of the U-O bonds in the uranyl dication (UO22+) generally requires use of strong reductants and electrophiles, little work has examined how interactions between the individual reaction components could affect final outcomes in solution. Here, the patterns of such reactivity have been studied in a UO22+-containing model system supported by a workhorse pentadentate ligand, 2,2'-[(methylimino)bis(2,1-ethanediylnitrilomethylidyne)]bis-phenol. Oxo activation and functionalization have been tested with (i) electrochemical and chemical reduction, and (ii) coordinating and noncoordinating solvents. In acetonitrile, uranyl reduction was achieved cleanly, but treatment of the reduced species with tris(pentafluorophenyl)borane (BCF) resulted in a mixture of products arising from direct electron transfer to BCF. In dichloromethane (CH2Cl2), electrochemical reduction of uranyl was achieved cleanly, but clean chemical reactivity was inaccessible. Despite these challenges, one trinuclear and oxo-deficient uranium-containing product was crystallized from CH2Cl2 solution and characterized; thus, desirable electrophilic reactivity can proceed to some degree in CH2Cl2 with BCF. Computational studies were used to investigate the properties of the trinuclear uranium product and the changes that could be inducible by further reduction. Taken together, the reactivity patterns identified here could inform design of improved systems for actinyl oxo functionalization.
Collapse
Affiliation(s)
- Emily R Mikeska
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Małgorzata Z Makoś
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Grant A Arehart
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | | | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Takeyama T, Tsushima S, Gericke R, Duckworth TM, Kaden P, März J, Takao K. A Series of An VIO 22+ Complexes (An = U, Np, Pu) with N 3O 2-Donating Schiff-Base Ligands: Systematic Trends in the Molecular Structures and Redox Behavior. Inorg Chem 2025; 64:1313-1322. [PMID: 39752261 PMCID: PMC11776050 DOI: 10.1021/acs.inorgchem.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
In their + V and + VI oxidation states, actinide elements (U, Np, and Pu) are commonly encountered in characteristic linear dioxo structures, known as actinyl ions (AnO2n+; An = U, Np, Pu, n = 1, 2). A systematic understanding of the structural and redox behavior of AnVO2+/AnVIO22+ complexes is expected to provide valuable information for controlling the behavior of An elements in natural environments and in nuclear fuel cycles while enabling the development of spintronics and new reactivities that utilize the anisotropic spin of the 5f electrons. However, systematic trends in the behavior of AnVO2+/AnVIO22+ complexes remain poorly understood. The [AnV/VIO2(saldien)]-/0 complexes (saldien2- = N,N'-disalicylidenediethylenetriamine) studied here offer a promising avenue for advancing our understanding of this subject. The molecular structures of a series of [AnVIO2(saldien)] complexes were found to exhibit notable similarities through these An elements with minor, but still significant, contributions from the actinide contraction. The redox potentials of the [AnV/VIO2(saldien)]-/0 couples clearly increase from U to Np, followed by a subsequent decrease from Np to Pu (-1.667 V vs Fc0/+ for [UV/VIO2(saldien)]-/0, -0.650 V for [NpV/VIO2(saldien)]-/0 and -0.698 V for [PuV/VIO2(saldien)]-/0). Such a difference can be explained in terms of the difference in character of the electronic configuration of the + VI oxidation state. A series of these redox trends was also successfully reproduced by DFT-based calculations. These findings provide valuable information for controlling the oxidation states of the An elements.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department
of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Satoru Tsushima
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Robert Gericke
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Tamara M. Duckworth
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Peter Kaden
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Juliane März
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Koichiro Takao
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Golwankar RR, Makoś MZ, Cajiao N, Neidig ML, Oliver AG, Day CS, Day VW, Glezakou VA, Blakemore JD. Activation and Functionalization of the Uranyl Ion by Electrochemical Reduction. Inorg Chem 2024; 63:24542-24553. [PMID: 39688291 DOI: 10.1021/acs.inorgchem.4c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Interconversion of the oxidation states of uranium enables separations and reactivity schemes involving this element and contributes to technologies for recycling of spent nuclear fuels. The redox behaviors of uranium species impact these processes, but use of electrochemical methods to drive reactions of molecular uranium complexes and to obtain molecular insights into the outcomes of electrode-driven reactions has received far less attention than it deserves. Here, we show that electro-reduction of the uranyl ion (UO22+) can be used to promote stepwise functionalization of the typically unreactive oxo groups with exogenous triphenylborane (BPh3) serving as a moderate electrophile, avoiding the conventional requirement for a chemical reductant. Parallel electroanalytical, spectrochemical, and chemical reactivity studies, supported by spectroscopic findings and structural data from X-ray diffraction analysis on key reduced and borylated products, demonstrate that our electrochemical approach largely avoids undesired cross reactions and disproportionation pathways; these usually impact the multicomponent systems needed for uranyl functionalization chemistry. Joint computational studies have been used to map the changes associated with U-O activation and to quantify the free energy differences related to key reactions. Taken together, the results suggest that electrochemical methods can be used for selective interconversion of molecular actinide species, reminiscent of methods commonly employed in transition metal redox catalysis.
Collapse
Affiliation(s)
- Riddhi R Golwankar
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Małgorzata Z Makoś
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Nathalia Cajiao
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | | | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Takeyama T, Tsushima S, Takao K. Controlling mixed-valence states of pyridyldiimino-bis( o-phenolato) ligand radical in uranyl(VI) complexes. Dalton Trans 2024; 53:16671-16684. [PMID: 39330312 DOI: 10.1039/d4dt01821d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Combination of a uranyl(VI) ion (UVIO22+) with a redox-active ligand results in characteristic electronic structures that cannot be achieved by either component alone. In this study, three UVIO22+ complexes that bear symmetric or asymmetric 2,6-diiminopyridine-based ligands were synthesized and found to exhibit a first redox couple between -1.17 V and -1.31 V (vs. Fc0/+) to afford singly reduced complexes. The unique electronic transitions of the singly reduced UVIO22+ complexes observed in the NIR region allowed us to combine spectroelectrochemistry and time-dependent density functional theory (TD-DFT) calculations to determine the redox-active site in these UVIO22+ complexes, i.e., to clarify the distribution of the additional unpaired electron. By exploiting the push-pull effect of electron-donating and -withdrawing substituents, the ligand-based π-radical of the singly reduced UVIO22+ complexes, which tends to delocalize over the ligand, can be localized to specific sites.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan.
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
5
|
Takeyama T, Tsushima S, Gericke R, Kaden P, März J, Takao K. Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5 f Orbitals. Chemistry 2023:e202302702. [PMID: 37671842 DOI: 10.1002/chem.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
We report the formation of a NpIV complex from the complexation of NpVI O2 2+ with the redox-active ligand tBu-pdiop2- =2,6-bis[N-(3,5-di-tert-butyl-2-hydroxyphenyl)iminomethyl]pyridine. To the best of our knowledge, this is the first example of the direct complexation-induced chemical reduction of NpVI O2 2+ to NpIV . In contrast, the complexation of UVI O2 2+ with tBu-pdiop2- did not induce the reduction of UVI O2 2+ , not even after the two-electron electrochemical reduction of [UVI O2 (tBu-pdiop)]. This contrast between the Np and U systems may be ascribed to the decrease of the energy of the 5 f orbitals in Np compared to those in U. The present findings indicate that the redox chemistry between UVI O2 2+ and NpVI O2 2+ should be clearly differentiated in redox-active ligand systems.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
| | - Robert Gericke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550, Tokyo, Japan
| |
Collapse
|
6
|
Takao K. How does chemistry contribute to circular economy in nuclear energy systems to make them more sustainable and ecological? Dalton Trans 2023. [PMID: 37128944 DOI: 10.1039/d3dt01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While one should be aware that its zero CO2 emission is actually achievable only when electric power is generated, nuclear power is one of the most viable and proven "carbon-free" energy sources to provide baseload electricity to the current energy-demanding society. Even after the power generation, the major part of spent nuclear fuels still consists of recyclable nuclear fuel materials such as U and Pu, promising circular economy of nuclear energy systems in principle. However, actual situations are not very simple due to the following issues: (1) resource security of nuclear fuel materials, (2) issues of depleted uranium, and (3) treatment and disposal of high-level radioactive wastes. In this Perspective, I discussed how chemistry can contribute to resolving these problems and what task academic research in fundamental chemistry should take on there.
Collapse
Affiliation(s)
- Koichiro Takao
- Laboratory for Zero-carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
7
|
Liang XX, Zhao XY, Guo A, Wang XW, Rong M, Chang L, Sun ZQ, Jin XD. Synthesis, crystal structure and antibacterial activity of zinc(II) complexes with Schiff bases derived from 5-fluorosalicylaldehyde. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2170795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xiao-Xue Liang
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| | - Xin-Yu Zhao
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| | - Ang Guo
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| | - Xiao-Wen Wang
- College of Light Industry, Liaoning University, Shenyang, P.R. China
| | - Mei Rong
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| | - Lin Chang
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| | - Zhong-Qiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P.R. China
| | - Xu-Dong Jin
- College of Chemistry, Liaoning University, Shenyang, P.R. China
| |
Collapse
|
8
|
van Rees K, Rajeshkumar T, Maron L, Sproules S, Love JB. Role of the Meso Substituent in Defining the Reduction of Uranyl Dipyrrin Complexes. Inorg Chem 2022; 61:20424-20432. [PMID: 36472325 PMCID: PMC9768749 DOI: 10.1021/acs.inorgchem.2c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrin-diimine anion LMes- [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization.
Collapse
Affiliation(s)
- Karlotta van Rees
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Thayalan Rajeshkumar
- LPCNO,
INSA, Université de Toulouse, 135, Avenue de Rangueil, Toulouse Cedex 4 31077, France
| | - Laurent Maron
- LPCNO,
INSA, Université de Toulouse, 135, Avenue de Rangueil, Toulouse Cedex 4 31077, France
| | - Stephen Sproules
- WestCHEM
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Jason B. Love
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.,
| |
Collapse
|
9
|
Takeyama T, Iwatsuki S, Tsushima S, Takao K. Synthesis and characterization of a uranyl(VI) complex with 2,6-pyridine-bis(methylaminophenolato) and its ligand-centred aerobic oxidation mechanism to a diimino derivative. Dalton Trans 2022; 51:6576-6586. [PMID: 35420620 DOI: 10.1039/d2dt00325b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A uranyl(VI) complex with 2,6-bis(3,5-di-tert-butyl-o-phenolateaminomethyl)pyridine (UO2(tBu-pdaop), 1) was synthesized and thoroughly characterized by 1H NMR, IR, elemental analysis, and single-crystal XRD. Right after the dissolution of complex 1 in pyridine or DMSO, the solution was pale red, whereas it gradually turned to dark purple under an ambient atmosphere. 1H NMR spectra at the initial and final states suggested that both of the two aminomethyl groups in 1 were converted to azomethine ones through aerobic oxidation. Indeed, a uranyl(VI) complex with 2,6-bis(3,5-di-tert-butyl-o-phenolateiminomethyl)pyridine (UO2(tBu-pdiop), 2) was obtained from the concentrated solution once the reaction was completed, and was characterized by IR, and single-crystal XRD. Kinetic analyses as well as mechanistic studies based on quantum chemical calculations suggested that hydrogen atom transfer from one of the amino groups in complex 1 to nearby O2 initiates the stepwise oxidation processes to finally afford 2. The present findings demonstrate the novel reactivity of a uranyl(VI) complex, and provide new insights to construct thermally-driven molecular conversion systems by a UO22+ complex catalyst.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| | - Satoshi Iwatsuki
- Department of Chemistry, Konan University, Higashinada-ku, 658-8501 Kobe, Japan
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
10
|
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg Chem 2022; 61:7130-7142. [PMID: 35467851 DOI: 10.1021/acs.inorgchem.2c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
11
|
Mizumachi T, Sato M, Kaneko M, Takeyama T, Tsushima S, Takao K. Fully Chelating N 3O 2-Pentadentate Planar Ligands Designed for the Strongest and Selective Capture of Uranium from Seawater. Inorg Chem 2022; 61:6175-6181. [PMID: 35394284 DOI: 10.1021/acs.inorgchem.2c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the unique fivefold equatorial coordination of UO22+, water-compatible pentadentate planar ligands, H2saldian and its derivatives, were designed for the strong and selective capture of UO22+ in seawater. In the simulated seawater condition (0.5 M NaCl + 2.3 mM HCO3-/CO32-, pH 8), saldian2- shows the strongest complexation with UO22+ to form UO2(saldian) (log β11 = 28.05 ± 0.07), which is more than 10 order of magnitude greater than amidoxime-based or -inspired ligand systems most commonly employed for U capture from seawater. Good selectivity for UO22+ from other metal ions coexisting in seawater was also demonstrated.
Collapse
Affiliation(s)
- Takumi Mizumachi
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Minami Sato
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masashi Kaneko
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
van Rees K, Hield EK, Carpentier A, Maron L, Sproules S, Love JB. Exploring the Redox Properties of Bench-Stable Uranyl(VI) Diamido-Dipyrrin Complexes. Inorg Chem 2022; 61:3249-3255. [PMID: 35129967 PMCID: PMC9007458 DOI: 10.1021/acs.inorgchem.1c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
uranyl complexes UO2(OAc)(L) and UO2Cl(L) of the redox-active, acyclic diamido–dipyrrin
anion L– are reported
and their redox properties explored. Because of the inert nature of
the complexes toward hydrolysis and oxidation, synthesis of both the
ligands and complexes was conducted under ambient conditions. Voltammetric,
electron paramagnetic resonance spectroscopy, and density functional
theory studies show that one-electron chemical reduction by the reagent
CoCp2 leads to the formation of a dipyrrin radical for
both complexes [Cp2Co][UO2(OAc)(L•)] and [Cp2Co][UO2Cl(L•)]. Air-stable
uranyl complexes of diamido−dipyrrin ligands
undergo one-electron reduction to form highly air-sensitive ligand
radical complexes instead of uranyl(V) complexes seen for diimine
analogues.
Collapse
Affiliation(s)
- Karlotta van Rees
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Emma K Hield
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Ambre Carpentier
- Laboratoire de Physique et Chimie de Nano-Objets, Institut National des Sciences Appliquées, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie de Nano-Objets, Institut National des Sciences Appliquées, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Stephen Sproules
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jason B Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
13
|
Takeyama T, Takao K. Effects of coordinating heteroatoms on molecular structure, thermodynamic stability and redox behavior of uranyl( vi) complexes with pentadentate Schiff-base ligands. RSC Adv 2022; 12:24260-24268. [PMID: 36128519 PMCID: PMC9413499 DOI: 10.1039/d2ra04639c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Uranyl(vi) complexes with pentadentate N3O2-, N2O3- and N2O2S1-donating Schiff base ligands, tBu,MeO–saldien–X2− (X = NH, O and S), were synthesized and thoroughly characterized by 1H NMR, IR, elemental analysis, and single crystal X-ray diffraction. The crystal structures of UO2(tBu,MeO–saldien–X) showed that the U–X bond strength follows U–O ≈ U–NH > U–S. Conditional stability constants (βX) of UO2(tBu,MeO–saldien–X) in ethanol were investigated to understand the effect of X on thermodynamic stability. The log βX decrease in the order of UO2(tBu,MeO–saldien–NH) (log βNH = 10) > UO2(tBu,MeO–saldien–O) (log βO = 7.24) > UO2(tBu,MeO–saldien–S) (log βS = 5.2). This trend cannot be explained only by Pearson's Hard and Soft Acids and Bases (HSAB) principle, but rather follows the order of basicity of X. Theoretical calculations of UO2(tBu,MeO–saldien–X) suggested that the ionic character of U–X bonds decreases in the order of U–NH > U–O > U–S, while the covalency increases in the order U–O < U–NH < U–S. Redox potentials of all UO2(tBu,MeO–saldien–X) in DMSO were similar to each other regardless of the difference in X. Spectroelectrochemical measurements and DFT calculations revealed that the center U6+ of each UO2(tBu,MeO–saldien–X) undergoes one-electron reduction to afford the corresponding uranyl(v) complex. Consequently, the difference in X of UO2(tBu,MeO–saldien–X) affects the coordination of tBu,MeO–saldien–X2− with UO22+. However, the HSAB principle is not always prominent, but the Lewis basicity and balance between ionic and covalent characters of the U–X interactions are more relevant to determine the bond strengths. The U–X bond strength and thermodynamic stability of uranyl(vi) complexes with pentadentate N2O2X1-donating ligands (X = NH, O, S) are affected by the difference in X. In contrast, the X atom does not largely affect the redox behavior of the complexes.![]()
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|