1
|
Pilar Del Río M, Villarroya BE, López JA, Geer AM, Lahoz FJ, Ciriano MA, Tejel C. Mixed-Valence Tetrametallic Iridium Chains. Chemistry 2023; 29:e202301438. [PMID: 37402228 DOI: 10.1002/chem.202301438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Neutral [X-{Ir2 }-{Ir2 }-X] (X=Cl, Br, SCN, I) and dicationic [L-{Ir2 }-{Ir2 }-L]2+ (L=MeCN, Me2 CO) tetrametallic iridium chains made by connecting two dinuclear {Ir2 } units ({Ir2 }=[Ir2 (μ-OPy)2 (CO)4 ], OPy=2-pyridonate) by an iridium-iridium bond are described. The complexes exhibit fractional averaged oxidation states of +1.5 and electronic delocalization along the metallic chain. While the axial ligands do not significantly affect the metal-metal bond lengths, the metallic chain has a significant impact on the iridium-L/X bond distances. The complexes show free rotation around the unsupported iridium-iridium bond in solution, with a low-energy transition state for the chloride chain. The absorption spectra of these complexes show characteristic bands at 438-504 nm, which can be fine-tuned by varying the terminal capping ligands.
Collapse
Affiliation(s)
- M Pilar Del Río
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - B Eva Villarroya
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Fernando J Lahoz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, Facultad de Ciencias, 50009, Zaragoza, Spain
| |
Collapse
|
2
|
Jana NC, Jagodič M, Brandão P, Patra M, Herchel R, Jagličić Z, Panja A. Magneto-structural studies on a number of doubly end-on cyanate and azide bridged dinuclear nickel(ii) complexes with {N 3O} donor Schiff base ligands. RSC Adv 2023; 13:11311-11323. [PMID: 37057262 PMCID: PMC10088076 DOI: 10.1039/d3ra00737e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Two new doubly μ 1,1-N3 bridged (1 and 3) and six new doubly μ 1,1-NCO bridged NiII complexes (2, 4-8) with six different N3O donor Schiff base ligands have been synthesized and magneto-structurally characterized. All these neutral complex molecules are isostructural and constitute edge sharing bioctahedral structures. Magnetic studies revealed that all these complexes exhibit ferromagnetic interaction through bridging pseudohalides with ferromagnetic coupling constant J being significantly higher for azide-bridged complexes than that of the cyanate analogues. This is consistent with the literature reported data and also the presence of polarizable π systems and two different N and O donor atoms in cyanate ion, rendering it a poor magnetic coupler in comparison to azide analogues. Although, the magneto-structurally characterized doubly μ 1,1-N3 bridged NiII complexes are abundant, only few such complexes with μ 1,1-bridging NCO- ions are reported in the literature. Remarkably, addition of these six new examples in this ever-growing series of doubly μ 1,1-NCO bridged systems gives us an opportunity to analyse the precise magneto-structural correlation in this system, showing a general trend in which the J value increases with an increase in bridging angles. Therefore, the high degree of structural and magnetic resemblances by inclusion of six new examples in this series is the major achievement of the present work. An elaborate DFT study was performed resulting in magneto-structural correlation showing that nature and value of the J-parameter is defined not only by Ni-Nb-Ni bond angles, but an important role is also played by the Ni1-Ni2-Nb-Xt dihedral angle (Nb and Xt are bridging N and terminal N or O atom of bridging ligands, respectively).
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College Panskura RS WB 721152 India
| | - Marko Jagodič
- Institute of Mathematics, Physics and Mechanics Jadranska 19 1000 Ljubljana Slovenia
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Moumita Patra
- Department of Chemistry, Panskura Banamali College Panskura RS WB 721152 India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University 17. Listopadu 12 77146 Olomouc Czech Republic
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics Jadranska 19 1000 Ljubljana Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana Jamova 2 1000 Ljubljana Slovenia
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College Panskura RS WB 721152 India
- Department of Chemistry, Gokhale Memorial Girls' College 1/1 Harish Mukherjee Road Kolkata-700020 India
| |
Collapse
|
3
|
Nicolini A, Anderlini B, Roncaglia F, Cornia A. An efficient transition-metal-free route to oligo- α-pyridylamines via fluoroarenes. CR CHIM 2023. [DOI: 10.5802/crchim.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
4
|
Structural Diversity of Lithium Oligo-α-Pyridylamides. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lithium oligo-α-pyridylamides are useful intermediates in coordination chemistry. Upon trans-metalation they have afforded a variety of extended metal atom chains (EMACs), which are currently investigated as molecular wires and single-molecule magnets. However, structural information on this class of compounds is scarce. Two trilithium salts of a new, sterically encumbered oligo-α-pyridylamido ligand were isolated in crystalline form and structurally characterized in the solid state and in solution. Lithiation of N2-(trimethylsilyl)-N6-{6-[(trimethylsilyl)amino]pyridin-2-yl}pyridine-2,6-diamine (H3L) with n-BuLi in thf yielded dimeric adduct [Li6L2(thf)6] (1), which was crystallized from n-hexane/thf as 1·C6H14. Crystals of a tetra-thf solvate with formula [Li6L2(thf)4] (2) were also obtained. The compounds feature two twisted L3− ligands exhibiting a cis-cis conformation and whose five nitrogen donors are all engaged in metal coordination. The six Li+ ions per molecule display coordination numbers ranging from 3 to 5. Compound 1·C6H14 was investigated by multinuclear 1D and 2D NMR spectroscopy, including 1H DOSY experiments, which indicated retention of the dimeric structure in benzene-d6 solution. To the best of our knowledge, 1 and 2 are the longest-chain lithium oligo-α-pyridylamides structurally authenticated so far, thereby qualifying as appealing intermediates to access high-nuclearity EMACs by trans-metalation.
Collapse
|
5
|
Luo R, Xu C, Tong JP, Shi H, Kong XJ, Fan Y, Shao F. Synthesis, structure and magnetism of a novel series of trinuclear nickel(II) clusters. CrystEngComm 2022. [DOI: 10.1039/d2ce00846g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five novel trinuclear nickel(II) clusters have been successfully synthesized, namely Ni3(fshz)2(L)4·n(sol) (H3fshz = N-formylsalicylhydrazide; L = pyridine, n = 0, 1; L = 4-methylpyridine, n = 1, sol = CH3CN,...
Collapse
|