1
|
Taufik A, Saleh R, Seong G. Enhanced photocatalytic performance of SnS 2 under visible light irradiation: strategies and future perspectives. NANOSCALE 2024; 16:9680-9709. [PMID: 38712924 DOI: 10.1039/d4nr00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tin(II) sulfide (SnS2) has emerged as a promising candidate for visible light photocatalytic materials. As a member of the transition metal dichalcogenides (TMDs) family, SnS2 features a band gap of approximately 2.20 eV and a layered structure, rendering it suitable for visible light activation with a high specific surface area. However, the application of SnS2 as a visible light photocatalyst still requires improvement, particularly in addressing the high recombination of electrons and holes, as well as the poor selectivity inherent in its perfect crystal structure. Therefore, ongoing research focuses on strategies to enhance the photocatalytic performance of SnS2. In this comprehensive review, we analyze recent advances and promising strategies for improving the photocatalytic performance of SnS2. Various successful approaches have been reported, including controlling the reactive facets of SnS2, inducing defects in the crystal structure, manipulating morphologies, depositing noble metals, and forming heterostructures. We provide a detailed understanding of these phenomena and the preparation techniques involved, as well as future considerations for exploring new science in SnS2 photocatalysis and optimizing performance.
Collapse
Affiliation(s)
- Ardiansyah Taufik
- WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Rosari Saleh
- Departement Fisika, FMIPA Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Integrated Laboratory of Energy and Environment FMIPA Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Gimyeong Seong
- Department of Environmental and Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, Republic of Korea
| |
Collapse
|
2
|
Zhang H, Mao L, Wang J, Nie Y, Geng Z, Zhong D, Tan X, Ye J, Yu T. One-Step Fabricated Sn 0 Particle on S-Vacancies SnS 2 to Accelerate Photoelectron Transfer for Sterling Photocatalytic CO 2 Reduction in Pure Water Vapor Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305727. [PMID: 37699770 DOI: 10.1002/smll.202305727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Promoting the proton-coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S-vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx 2- ) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S-vacancies boost H2 O adsorption while Sx 2- increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g-1 h-1 without the addition of co-catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S-vacancies and Sx 2- to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.
Collapse
Affiliation(s)
- Haoyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Junyan Wang
- School of Environmental Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Yu Nie
- School of Environmental Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Zikang Geng
- School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Dichang Zhong
- Institute for New Energy Materialsand Low Carbon Technologies, School of Materials Scienceand Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Xin Tan
- School of Environmental Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0047, Japan
| | - Tao Yu
- School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
4
|
Plasma induced rich oxygen vacancies fiber-like ZnO for efficient photocatalytic CO2 reduction. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. CHEMOSPHERE 2022; 308:136447. [PMID: 36116627 DOI: 10.1016/j.chemosphere.2022.136447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Energy crisis and environmental pollution have become the bottleneck of human sustainable development. Therefore, there is an urgent need to develop new catalysts for energy production and environmental remediation. Due to the high cost caused by blind screening and limited valuable computing resources, the traditional experimental methods and theoretical calculations are difficult to meet with the requirements. In the past decades, computer science has made great progress, especially in the field of machine learning (ML). As a new research paradigm, ML greatly accelerates the theoretical calculation methods represented by first principal calculation and molecular dynamics, and establish the physical picture of heterogeneous catalytic processes for energy and environment. This review firstly summarized the general research paradigms of ML in the discovery of catalysts. Then, the latest progresses of ML in light-, electricity- and enzyme-mediated heterogeneous catalysis were reviewed from the perspective of catalytic performance, operating conditions and reaction mechanism. The general guidelines of ML for heterogeneous catalysis were proposed. Finally, the existing problems and future development trend of ML in heterogeneous catalysis mediated by light, electricity and enzyme were summarized. We highly expect that this review will facilitate the interaction between ML and heterogeneous catalysis, and illuminate the development prospect of heterogeneous catalysis.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|
6
|
Ma X, Li D, Jiang Y, Jin H, Bai L, Qi J, You F, Yuan F. Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO 2 reduction. J Colloid Interface Sci 2022; 628:768-776. [PMID: 36029591 DOI: 10.1016/j.jcis.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Utilizing solar energy to convert carbon dioxide (CO2) into chemical fuels could simultaneously mitigate the greenhouse effect and fossil fuel crisis. Herein, a heterogeneous photocatalyst of ZnO nanofiber deposited by Pt nanoparticles was successfully synthesized toward photocatalytic CO2 reduction via radio-frequency thermal plasma and photo-deposition method. The Pt nanoparticles were introduced on the surface of ZnO nanofibers to broaden the light absorption and utilization, increase the additional reaction active sites and facilitate the separation of photo-generated electron/hole pairs. Combined with the natural advantages of short transfer path of charge carriers and self-support effecting in humid reaction environment for nanofibers, the Pt/ZnO hetero-junction nanocomposites displayed superior photocatalytic activity for CO2 reduction with respect to bare ZnO nanofibers, affording a CO-production rate as high as 45.76 μmol g-1 h-1 under 300 W Xe lamp irradiation within a gas-solid reaction system. Furthermore, in-suit Fourier transform infrared (FTIR) spectra were applied to unveil the details during photocatalytic CO2 reduction. This work presents a hetero-junction nanocomposite photocatalyst based on eco-friendly semiconductor and metal materials.
Collapse
Affiliation(s)
- Xiaohong Ma
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Danyang Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Huacheng Jin
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liuyang Bai
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian 463000, PR China
| | - Jian Qi
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Feifei You
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Fangli Yuan
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| |
Collapse
|
7
|
Yan M, Jiang F, Zhen J, Wu Y. Facile Insights into Hydrothermal Synthesis of Ultrathin Bi 4NbO 8Cl Nanosheets for Efficient CO 2 Photoreduction. Inorg Chem 2022; 61:11811-11819. [PMID: 35866247 DOI: 10.1021/acs.inorgchem.2c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing novel two-dimensional photocatalysis is an excellent strategy for high-efficiency CO2 photoreduction. Herein, for the first time, we demonstrate a facile hydrothermal synthesis method to construct ultrathin Bi4NbO8Cl nanosheets using tartaric acid as a complexing agent, which can restrain the speed of nucleation. The ultrathin Bi4NbO8Cl nanosheets exhibit excellent catalytic activity of CO and CH4 production (10.84 and 4.45 μmol g-1 h-1), which are up to 1.9 and 1.4 times higher than those of the bulk Bi4NbO8Cl, respectively. Photoelectric experiments and mechanism analysis systematically show that the as-obtained enhanced performance should be attributed to the formation of ultrathin Bi4NbO8Cl nanosheets, and charge separation and migration are significantly boosted. Therefore, this ultrathin Bi4NbO8Cl structure has provided new insights into the controllable preparation of ultrathin nanosheet photocatalysts to effectively improve the catalytic performance.
Collapse
Affiliation(s)
- Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Jiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingjing Zhen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|