1
|
Bennett MT, Park KA, Musgrave CB, Brubaker JW, Dickie DA, Goddard WA, Gunnoe TB. Hexa-Fe(III) Carboxylate Complexes Facilitate Aerobic Hydrocarbon Oxidative Functionalization: Rh Catalyzed Oxidative Coupling of Benzene and Ethylene to Form Styrene. ACS Catal 2024; 14:10295-10316. [PMID: 38988649 PMCID: PMC11232027 DOI: 10.1021/acscatal.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Fe(II) carboxylates react with dioxygen and carboxylic acid to form Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 (X = acetate or pivalate), which is an active oxidant for Rh-catalyzed arene alkenylation. Heating (150-200 °C) the catalyst precursor [(η2-C2H4)2Rh(μ-OAc)]2 with ethylene, benzene, Fe(II) carboxylate, and dioxygen yields styrene >30-fold faster than the reaction with dioxygen in the absence of the Fe(II) carboxylate additive. It is also demonstrated that Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 is an active oxidant under anaerobic conditions, and the reduced material can be reoxidized to Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 by dioxygen. At optimized conditions, a turnover frequency of ∼0.2 s-1 is achieved. Unlike analogous reactions with Cu(II) carboxylate oxidants, which undergo stoichiometric Cu(II)-mediated production of phenyl esters (e.g., phenyl acetate) as side products at temperatures ≥150 °C, no phenyl ester side product is observed when Fe carboxylate additives are used. Kinetic isotope effect experiments using C6H6 and C6D6 give k H/k D = 3.5(3), while the use of protio or monodeutero pivalic acid reveals a small KIE with k H/k D = 1.19(2). First-order dependencies on Fe(II) carboxylate and dioxygen concentration are observed in addition to complicated kinetic dependencies on the concentration of carboxylic acid and ethylene, both of which inhibit the reaction rate at a high concentration. Mechanistic studies are consistent with irreversible benzene C-H activation, ethylene insertion into the formed Rh-Ph bond, β-hydride elimination, and reaction of Rh-H with Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 to regenerate a Rh-carboxylate complex.
Collapse
Affiliation(s)
- Marc T. Bennett
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kwanwoo A. Park
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jack W. Brubaker
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Diane A. Dickie
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Liu J, Xu J, Jian P. Manipulation of Electronic Effect and Assembly Architecture to Invoke Oxidation of Ethylbenzene by Hierarchical Co 3O 4 Wreaths. Inorg Chem 2024; 63:8938-8947. [PMID: 38682566 DOI: 10.1021/acs.inorgchem.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A high-performance transition-metal oxide catalyst can be designed by appropriately integrating the concepts of morphology regulation and electronic structure modulation. In this work, hierarchical Co3O4 wreaths (CCW) enriched with oxygen vacancies (Ov) were facilely constructed for the selective oxidation of ethylbenzene (EB) to acetophenone (AP). Under the screened optimal reaction conditions, the CCW catalyst can offer a 79.1% conversion of EB (ri = 0.244 mol gcat-1 h-1) accompanied by a selectivity of 92.3% to AP. The good reaction performance can be attributed to the cooperation of defect engineering and architecture design, which can synergistically facilitate the EB oxidation performance by augmenting the intrinsic reactivity and accessibility of active sites. This work presents a reliable route to construct a high-performance transitional metal oxide catalyst via manipulation of electronic effect and assembly architecture for the selective oxidation of EB and beyond.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Jiajun Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
3
|
Shi J, Wang W, Xu J, Jian P, Liu J. Coupled Interface and Oxygen-Defect Engineering in Co 3O 4/CoMoO 4 Heterostructures toward Active Oxidation of Ethylbenzene. Inorg Chem 2024; 63:5142-5150. [PMID: 38433379 DOI: 10.1021/acs.inorgchem.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The catalytic oxidation of ethylbenzene (EB) is a promising route to produce acetophenone (AcPO). Unfortunately, it remains a great challenge to achieve the highly efficient oxidation of EB under solvent-free conditions using molecular oxygen as the sole oxidant. In this contribution, we present a facile strategy to construct hierarchical oxygen vacancy-rich Co3O4/CoMoO4 heterostructures (Vö-CCMO), which delivers a high yield value of 74.5% at 83.2% conversion of EB and selectivity of 89.6% to AcPO. Both experimental studies and theoretical calculations substantiate the important role of oxygen-defect engineering triggered by the modified chemistry environment at the interfaces between the biphasic phases, which contributes to the good catalytic performance. This work illustrates a promising paradigm for the exploit of advanced catalysts toward boosting EB oxidation reaction in a more practical way.
Collapse
Affiliation(s)
- Jie Shi
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wanjing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiajun Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
4
|
Liu M, Cai J, Huang L, Duan C. Photocatalytic C(sp 3)-H bond functionalization by Cu(I) halide cluster-mediated O 2 activation. Dalton Trans 2023; 52:17109-17113. [PMID: 37987084 DOI: 10.1039/d3dt02862c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photocatalytic C-H bond activation is a challenging approach to selectively functionalize C(sp3)-H bonds with dioxygen under mild conditions. Herein, by merging transition metal- and photo-catalysis, photoactive Cu(I)-halide(X) (X = Cl, Br, I) clusters are employed to effectively catalyse the selective monooxygenation and C-C oxidative cross-coupling of C(sp3)-H bonds with unreactive O2 upon light irradiation. This modern protocol promises a photoinduced SET process between Cu(I)-clusters and O2, and possibly forms Cu(II)-O2˙- species for abstracting the H-atom from the C(sp3)-H bond. This process produces alkyl radicals to react with -OOH or nucleophiles for oxidation or cross-coupling products, advancing the Cu(I)-cluster mediated photoredox catalysis toward functional fine chemicals with pursued selectivity.
Collapse
Affiliation(s)
- Mingxu Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China.
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
5
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
6
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|