1
|
Yamasaki N, Matsuhashi C, Uekusa H, Nakayama N, Obata S, Goto H, Maki S, Hirano T. Dual-Mode Emission and Solvent-Desorption Dependent Kinetic Properties of Crystalline-State Chemiluminescence Reaction of 9-Phenyl-10-(2-phenylethynyl)anthracene Endoperoxide. J Am Chem Soc 2025; 147:2455-2466. [PMID: 39668603 DOI: 10.1021/jacs.4c12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The chemiluminescence (CL) feature and reactivity of the aromatic endoperoxide 9-phenyl-10-(2-phenylethynyl)anthracene endoperoxide (PPEA-O2) were investigated in the crystalline state. For this, PPEA-O2 crystals were prepared using dichloromethane and n-hexane. These crystals exhibited an α-phase structure containing n-hexane as a crystal solvent. The crystal structure of nonperoxidic anthracene (i.e., PPEA) was also confirmed. After optimizing heating conditions to 120 °C for the thermolytic reaction of PPEA-O2 in crystals while maintaining the solid state, its CL characteristic and reactivity were investigated. Two key findings were derived: (1) dual-mode emission with maxima at 510 and 1275 nm and (2) distinct observation of CL emission at the first 2-3 min after the start of heating owing to the rapid thermolytic reaction coupled with n-hexane desorption. The 510 and 1275 nm emissions were attributed to the PPEA excimer and 1O2 (1Δg), respectively. We proposed a mechanism involving the triplet-triplet annihilation of the excited triplet states of PPEA to explain excimer production with postulated pathways for generating these triplet states from PPEA-O2. The rapid thermolytic reaction of PPEA-O2 in α-phase crystals with simultaneous n-hexane desorption was attributed to the formation of transient vacant spaces, which increased the molecular freedom necessary for the reaction ("transient vacant space effect"). Thus, the CL of PPEA-O2 proved useful for identifying characteristic reactivity and analyzing the luminescence mechanism of aromatic endoperoxides in the crystalline state.
Collapse
Affiliation(s)
- Norihisa Yamasaki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Chihiro Matsuhashi
- Coordinated Center for UEC Research Facilities, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| | - Naofumi Nakayama
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Shigeaki Obata
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Hitoshi Goto
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
- Information and Media Center, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Shojiro Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takashi Hirano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
2
|
Guo S, Zhan WW, Yang FL, Zhou J, Duan YH, Zhang D, Yang Y. Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D 2h-symmetric anions. Nat Commun 2024; 15:5628. [PMID: 38965215 PMCID: PMC11224320 DOI: 10.1038/s41467-024-49964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The control of a molecule's geometry, chirality, and physical properties has long been a challenging pursuit. Our study introduces a dependable method for assembling D3-symmetric trigonal bipyramidal coordination cages. Specifically, D2h-symmetric anions, like oxalate and chloranilic anions, self-organize around a metal ion to form chiral-at-metal anionic complexes, which template the formation of D3-symmetric trigonal bipyramidal coordination cages. The chirality of the trigonal bipyramid is determined by the point chirality of chiral amines used in forming the ligands. Additionally, these cages exhibit chiral selectivity for the included chiral-at-metal anionic template. Our method is broadly applicable to various ligand systems, enabling the construction of larger cages when larger D2h-symmetric anions, like chloranilic anions, are employed. Furthermore, we successfully produce enantiopure trigonal bipyramidal cages with anthracene-containing backbones using this approach, which would be otherwise infeasible. These cages exhibit circularly polarized luminescence, which is modulable through the reversible photo-oxygenation of the anthracenes.
Collapse
Affiliation(s)
- Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng-Lei Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Hao Duan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Zhang L, Li B, Li R, Wang Y, Ye S, Zhang P, Wu B. Spontaneous Resolution of Chiral Janus-Type Double-Layered Metallocyclic Strips Incorporating Möbius Ring and Circular Helicate. J Am Chem Soc 2023; 145:18221-18226. [PMID: 37552546 DOI: 10.1021/jacs.3c05746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Homochiral metal-organic macrocyclic complexes are of great significance owing to their chirality and well-defined internal cavities that potentially have the ability to mimic complicated biological processes. Here we report a novel metal/anion-coordination co-driven strategy for the formation of nanoscale supramolecular metallocycles with unique topology, large size, and desired chirality. The enantiomeric Janus-type metallocyclic strips are assembled based on the synergistic coordination of sulfate anions and CoII ions to a bifunctional achiral ligand combining the o-phenylene-(bis)urea anion-chelating and 8-hydroxyquinoline metal-coordinating sites. The inherent chirality arises from two types of helical chiralities (triply twisted Möbius ring and circular helicate), which is observed for the first time for metal-organic complex systems. Notably, spontaneous chiral resolution by conglomerate crystallization into a pair of enantiomers (P- or M-Co9) is realized, which is attributed to the multiple weak intermolecular interactions facilitating the hierarchically helical superstructure.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ran Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Sheng Ye
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Peng Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Clennan EL. Aromatic Endoperoxides. Photochem Photobiol 2022; 99:204-220. [PMID: 35837947 DOI: 10.1111/php.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The fundamental aspects of aromatic endoperoxide chemistry are reviewed including their synthesis and reactions. The discussion will focus on factors that will both enhance and prevent the formation of aromatic endoperoxides, and on structural features that will provide control over their ability to release singlet oxygen. This approach recognizes the dual use of aromatic hydrocarbons as both precursors of endoperoxides and as valuable materials for incorporation in electronic and photonic devices. Improvement of the existing methods and development of new methods for the synthesis of endoperoxides is necessary as result of the demand to improve existing and to create new applications for these valuable materials. On the other hand, prevention of endoperoxide formation is crucial to inhibit irreversible oxidative degradation of aromatic hydrocarbons and to extend their lifetimes as useful organic semiconductors.
Collapse
Affiliation(s)
- Edward L Clennan
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|