1
|
Guo M, Jin Z, Pan J, Xu J, Guo L, Yin XB, Lu N, Zhang M. Construction of COFs@MoS 2-Pd Hierarchical Tubular Heterostructures for Enhanced Catalytic Performance. Inorg Chem 2024; 63:18263-18275. [PMID: 39297249 DOI: 10.1021/acs.inorgchem.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Here, we report ternary COFs@MoS2-Pd hybrids with an innovative self-sacrificial approach. MoO3@Covalent organic frameworks (COFs) microcables were first prepared and then two-dimensional MoS2 nanosheets (NSs) were integrated onto the surface of COFs, as COFs@MoS2, after treatment with hydrothermal reaction. The MoS2 NSs were used as an excellent support to introduce Pd nanoparticles (NPs) thanks to their reducing ability for the formation of the ternary COFs@MoS2-Pd hybrids. While COF microtubes improved the electrical conductivity of the hybrid materials, they also decreased the aggregation of MoS2 NSs, as a contribution to the enhanced catalytic performance. The mild reaction between MoS2 and Pd2+ ions realized the dense distribution of Pd NPs onto COFs@MoS2 for abundant active sites to further improve the catalytic performance. Thus, the hierarchical MoS2-based ternary hybrids were prepared with the enhanced catalytical performance as validated with the enzyme-like catalysis and the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Mintong Guo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziqi Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jianmin Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lixian Guo
- Jinan Children's Hospital, Jinan 250022, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Wang H, Guo L, Pan J, Xu J, Yin XB, Zhang M. Construction of hierarchical NCMTs@MoO 2/FeNi 3 tubular heterostructures for enhanced performance in catalysis and protein adsorption. Dalton Trans 2024; 53:12973-12984. [PMID: 39026508 DOI: 10.1039/d4dt01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A new type of hybrid material (NCMTs@MoO2/FeNi3) with a multi-layer heterostructure was designed and fabricated via a one-step pyrolysis process using FeOOH/NiMoO4@PDA as the precursor. FeOOH/NiMoO4@PDA was prepared by the solvothermal method, followed by the nickel-ion etching method coupled with the polymerization of dopamine (DA). The as-obtained material was made of nitrogen-doped carbon nanotubes embedded with FeNi3 and MoO2 nanoparticles (NPs). Notably, the FeNi3 NPs exhibited significantly improved performance in the reduction of 4-nitrophenol (4-NP) and adsorption of histidine-rich protein as well as provided appropriate magnetism resources. The MoO2 NPs imparted a metallic nature with excellent conductivity, and the N-doped mesoporous carbon microtubes also improved conductivity and facilitated mass transfer, thus leading to enhanced performance in catalysis. Benefiting from the 1D hierarchical porous structure and compositional features, the NCMTs@MoO2/FeNi3 composites exhibited excellent performance in 4-NP reduction and protein adsorption via specific metal affinity between the polyhistidine groups of proteins and the FeNi3 NPs. The result presented here indicates that the strategy of combining tailored components, heterostructuring, and carbon integration is a promising way to obtain high-performance composites for other energy-related applications.
Collapse
Affiliation(s)
- Hongxin Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lixian Guo
- Jinan Children's Hospital, Jinan 250022, China.
| | - Jianmin Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
3
|
Jin Z, Li H, Zhang L, Pan J, Xu J, Yin XB, Zhang M. Interfacing Ag 2S Nanoparticles and MoS 2 Nanosheets on Polypyrrole Nanotubes with Enhanced Catalytic Performance. Inorg Chem 2024; 63:4260-4268. [PMID: 38372243 DOI: 10.1021/acs.inorgchem.3c04332] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The tubular architecture with multiple components can bring synergistic effects to improve the enzyme-like activity of molybdenum-based nanomaterials. Here, a facile polypyrrole (PPy)-protected hydrothermal sulfidation process was implemented to engineer MoS2/Ag2S heterointerfaces encapsulated in one-dimensional (1D) PPy nanotubes with MoO3@Ag nanorods as the self-sacrificing precursor. Notably, the sulfidation treatment led to the generation of MoS2 nanosheets (NSs) and Ag2S nanoparticles (NPs) and the creation of a tubular structure with a "kill three birds with one stone" role. The Ag2S/MoS2@PPy nanotubes showed the synergistic combined effects of Ag2S NPs, MoS2 NSs, and the 1D tube-like nanostructure. Based on the synergistic effects from these multiple components and the tubular structure, Ag2S/MoS2@PPy nanocomposites were used as a colorimetric sensing platform for detecting H2O2. Moreover, the reduction of 4-nitrophenol (4-NP) revealed excellent catalytic activity in the presence of NaBH4 and Ag2S/MoS2@PPy nanocomposites. This work highlights the effects of MoS2/Ag2S heterointerfaces and the hierarchical tubular structure in catalysis, thereby providing a new avenue for reducing 4-NP and the enzyme-like catalytic field.
Collapse
Affiliation(s)
- Ziqi Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanhuan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lei Zhang
- School of Geosciences & Surveying Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jianmin Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
4
|
Zhang L, Han S, Ding L, He X, Zhang M. Flexible and functional SiO2 nanofibers immobilized with nickel nanoparticles for nanocatalysis and protein adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
El-Aal MA, Ali HM, Ibrahim SM. Cu-Doped 1D Hydroxyapatite as a Highly Active Catalyst for the Removal of 4-Nitrophenol and Dyes from Water. ACS OMEGA 2022; 7:26777-26787. [PMID: 35936455 PMCID: PMC9352244 DOI: 10.1021/acsomega.2c03106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 05/24/2023]
Abstract
Metallic copper nanoparticle (Cu NP)-doped 1D hydroxyapatite was synthesized using a simple chemical reduction method. To describe the structure and composition of the Cu/HAP nanocomposites, physicochemical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma, N2 adsorption-desorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy were used. The TEM scan of the Cu/HAP nanocomposite revealed a rod-like shape with 308 nm length and 117 nm width on average. The catalytic activity of Cu/HAP nanocomposites for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 has been thoroughly investigated. The 0.7% Cu/HAP nanocomposite was shown to have superior catalytic activity than the other nanocomposites, converting 4-NP to 4-AP in ∼1 min with good recyclability. Moreover, this nanocomposite showed excellent catalytic performance in the organic dye reduction such as Congo red and acriflavine hydrochloride dyes. The high dispersion of Cu NPs on HAP support, the high specific surface area, and the small Cu particles contributed to its remarkable catalytic performance.
Collapse
Affiliation(s)
- Mohamed Abd El-Aal
- Catalysis
and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Hazim M. Ali
- Department
of Chemistry, College of Science, Jouf University, P.O. Box 2014 Sakaka, Aljouf, Saudi Arabia
| | - Samia M. Ibrahim
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511 New Valley, Egypt
| |
Collapse
|
6
|
He X, Han S, Zheng J, Xu J, Yin XB, Zhang M. Facile fabrication of ultrafine CoNi alloy nanoparticles supported on hexagonal N-doped carbon/Al 2O 3 nanosheets for efficient protein adsorption and catalysis. CrystEngComm 2022. [DOI: 10.1039/d2ce00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C–CoNi/@Al2O3 nanosheets were well constructed with CoAl-LDH nanosheets as a precursor, and exhibited excellent performance as both a catalyst and an adsorbent.
Collapse
Affiliation(s)
- Xiaoying He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan 250002, China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|