1
|
Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, Li Z, Xing F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology 2025; 23:157. [PMID: 40022098 PMCID: PMC11871784 DOI: 10.1186/s12951-025-03252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Cancer treatment is currently one of the most critical healthcare issues globally. A well-designed drug delivery system can precisely target tumor tissues, improve efficacy, and reduce damage to normal tissues. Stimuli-responsive drug delivery systems (SRDDSs) have shown promising application prospects. Intelligent nano drug delivery systems responsive to endogenous stimuli such as weak acidity, complex redox characteristics, hypoxia, active energy metabolism, as well as exogenous stimuli like high temperature, light, pressure, and magnetic fields are increasingly being applied in chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and various other anticancer approaches. Metal-organic frameworks (MOFs) have become promising candidate materials for constructing SRDDSs due to their large surface area, tunable porosity and structure, ease of synthesis and modification, and good biocompatibility. This paper reviews the application of MOF-based SRDDSs in various modes of cancer therapy. It summarizes the key aspects, including the classification, synthesis, modifications, drug loading modes, stimuli-responsive mechanisms, and their roles in different cancer treatment modalities. Furthermore, we address the current challenges and summarize the potential applications of artificial intelligence in MOF synthesis. Finally, we propose strategies to enhance the efficacy and safety of MOF-based SRDDSs, ultimately aiming at facilitating their clinical translation.
Collapse
Affiliation(s)
- Ziliang Guo
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiyun Yu
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Cu-UiO-66 Catalyzed Synthesis of Imines via Acceptorless Dehydrogenative Coupling of Alcohols and Amines. Chem Asian J 2025; 20:e202400984. [PMID: 39495213 DOI: 10.1002/asia.202400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Herein, the Cu-UiO-66 catalyst was developed for acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines. The Cu-UiO-66 catalyst was synthesized by installing Cu2+ onto Zr-oxo clusters in UiO-66, and the catalyst efficiently catalyzes the ADC reaction under mild and environmentally friendly conditions with excellent selectivity. Mechanistic studies reveal that the O2⋅- radicals and porosity of formed in Cu-UiO-66 participate cooperatively during the catalytic cycle. Meanwhile, the only by-product of the system is environmentally benign water. Cycling tests and hot filtration tests showed that the Cu-UiO-66 catalyst exhibited excellent stability and catalytic activity during the reaction. Importantly, the Cu-UiO-66 catalyst might provide a promising strategy for the ADC reaction between alcohols and amines to produce imines.
Collapse
Affiliation(s)
- Yujuan Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Qiulin Zhu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongyang Xu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiawei Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yongfei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Cuiping Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
3
|
Prakash O, Verma D, Singh PC. Exploring enzyme-immobilized MOFs and their application potential: biosensing, biocatalysis, targeted drug delivery and cancer therapy. J Mater Chem B 2024; 12:10198-10214. [PMID: 39283204 DOI: 10.1039/d4tb01556h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enzymes are indispensable in several applications including biosensing and degradation of pollutants and in the drug industry. However, adverse conditions restrict enzymes' utility in biocatalysis due to their inherent limitations. Metal-organic frameworks (MOFs), with their robust structure, offer an innovative avenue for enzyme immobilization, enhancing their resilience against harsh solvents and temperatures. This advancement is pivotal for application in bio-sensing, bio-catalysis, and specifically, targeted drug delivery in cancer therapy, where enzyme-MOF composites enable precise therapeutic localization, minimizing the side effects of traditional treatment. The adaptable nature of MOFs enhances drug biocompatibility and availability, significantly improving therapeutic outcomes. Moreover, the integration of enzyme-immobilized MOFs into bio-sensing represents a leap forward in the rapid and accurate identification of biomarkers, facilitating early diagnosis and disease monitoring. In bio-catalysis, this synergy promotes efficient and environmentally safe chemical synthesis, enhancing reaction rates and yields and broadening the scope of enzyme application in pharmaceutical and bio-fuel production. This review article explores the immobilization techniques and their biomedical applications, specifically focusing on drug delivery in cancer therapy and bio-sensing. Additionally, it addresses the challenges faced in this expanding field.
Collapse
Affiliation(s)
- Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Deepika Verma
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
4
|
Elmehrath S, Ahsan K, Munawar N, Alzamly A, Nguyen HL, Greish Y. Antibacterial efficacy of copper-based metal-organic frameworks against Escherichia coli and Lactobacillus. RSC Adv 2024; 14:15821-15831. [PMID: 38752161 PMCID: PMC11095089 DOI: 10.1039/d4ra01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
The widespread and excessive use of antimicrobial drugs has resulted in a concerning rise in bacterial resistance, leading to a risk of untreatable infections. The aim of this study was to formulate a robust and efficient antibacterial treatment to address this challenge. Previous work focused on the effectiveness of the Cu-BTC metal-organic framework (MOF; BTC stands for 1,3,5-benzenetricarboxylate) in combatting various bacterial strains. Herein, we compare the antibacterial properties of Cu-BTC with our newly designed Cu-GA MOF, consisting of copper ions bridged by deprotonated gallate ligands (H2gal2-), against Escherichia coli (E. coli) and Lactobacillus bacteria. Cu-GA was synthesized hydrothermally from copper salt and naturally derived gallic acid (H4gal) and characterized for antibacterial evaluation. The gradual breakdown of Cu(H2gal) resulted in a significant antibacterial effect that is due to the release of copper ions and gallate ligands from the framework. Both copper MOFs were nontoxic to bacteria at low concentrations and growth was completely inhibited at high concentrations when treated with Cu-BTC (1500 μg for E. coli and 1700 μg for Lactobacillus) and Cu-GA (2000 μg for both bacterial strains). Furthermore, our agarose gel electrophoresis results indicate that both MOFs could disrupt bacterial cell membranes, hindering the synthesis of DNA. These findings confirm the antibacterial properties of Cu-BTC and the successful internalization of Cu2+ ions and gallic acid by bacteria from the Cu-GA MOF framework, suggesting the potential for a sustained and effective therapeutic approach against pathogenic microorganisms.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University Al-Ain 15551 UAE
- Wyss Institute at Harvard University Boston MA 02215 USA
| | - Khansa Ahsan
- Department of Chemistry, United Arab Emirates University Al-Ain 15551 UAE
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University Al-Ain 15551 UAE
| | - Ahmed Alzamly
- Department of Chemistry, United Arab Emirates University Al-Ain 15551 UAE
| | - Ha L Nguyen
- Department of Chemistry, University of California Berkeley Berkeley CA 94720 USA
| | - Yaser Greish
- Department of Chemistry, United Arab Emirates University Al-Ain 15551 UAE
- Zayed Centre for Health Sciences, United Arab Emirates University Al-Ain 15551 UAE
| |
Collapse
|
5
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Zhang L, Wang W, He W, Du T, Wang S, Hu P, Pan B, Jin J, Liu L, Wang J. A tailored slow-release film with synergistic antibacterial and antioxidant activities for ultra-persistent preservation of perishable products. Food Chem 2024; 430:136993. [PMID: 37527577 DOI: 10.1016/j.foodchem.2023.136993] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Rapid decrease in antibacterial efficacy of existing active packages is difficult to promisingly prevent microbial infection during the storage of perishable products. Here, we pioneered an advanced ZnO-doped hollow carbon-encapsulated curcumin (ZHC-Cur)-chitosan (CS) slow-release film (ZHC-Cur-CS) with "nano-barricade" structure through demand-oriented tailoring of the structure and components of zeolitic imidazolate framework-8 (ZIF-8) carrier. Such an exquisite structure realized the effective sustained release of Curcumin through the dual complexity of diffusion pathway by the disordered hierarchical pore structure and steric hindrance. Prepared ZHC-Cur-CS film exhibited boosting bactericidal and antioxidant abilities by virtue of the functional synergy between curcumin and ZnO. Thus, ZHC-Cur-CS film demonstrated excellent preservation performance by significantly prolonging the shelf life of Citrus (∼2.4 times). Furthermore, the upgraded mechanical strength, improved barrier ability, and proven safety laid the foundation for its practical application. These satisfactory properties underscore the applicability of ZHC-Cur-CS film for the efficient preservation of perishable products.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wen He
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Puyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Bing Pan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jingjing Jin
- Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Lizhi Liu
- Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA..
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Yuan J, Zeng Y, Pan Z, Feng Z, Bao Y, Ye Z, Li Y, Tang J, Liu X, He Y. Amino-Functionalized Zirconium-Based Metal-Organic Frameworks as Bifunctional Nanomaterials to Treat Bone Tumors and Promote Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53217-53227. [PMID: 37943099 DOI: 10.1021/acsami.3c11787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Bone tumor patients often encounter challenges associated with cancer cell residues and bone defects postoperation. To address this, there is an urgent need to develop a material that can enable tumor treatment and promote bone repair. Metal-organic frameworks (MOFs) have attracted the interest of many researchers due to their special porous structure, which has great potential in regenerative medicine and drug delivery. However, few studies explore MOFs with dual antitumor and bone regeneration properties. In this study, we investigated amino-functionalized zirconium-based MOF nanoparticles (UiO-66-NH2 NPs) as bifunctional nanomaterials for bone tumor treatment and osteogenesis promotion. UiO-66-NH2 NPs loading with doxorubicin (DOX) (DOX@UiO-66-NH2 NPs) showed good antitumor efficacy both in vitro and in vivo. Additionally, DOX@UiO-66-NH2 NPs significantly reduced lung injury compared to free DOX in vivo. Interestingly, the internalized UiO-66-NH2 NPs notably promoted the osteogenic differentiation of preosteoblasts. RNA-sequencing data revealed that PI3K-Akt signaling pathways or MAPK signaling pathways might be involved in this enhanced osteogenesis. Overall, UiO-66-NH2 NPs exhibit dual functionality in tumor treatment and bone repair, making them highly promising as a bifunctional material with broad application prospects.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Yu H, Si P, Lu W, Wang B, Gao J, Lin W, Hu Q. Construction of Core-Shell MOF CSMnP with Enzyme-Like Activity for Chemotherapy and Chemodynamic Therapy. Inorg Chem 2023; 62:18128-18135. [PMID: 37881839 DOI: 10.1021/acs.inorgchem.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Materials with enzyme-like activity have received a lot of attention in the field of tumor catalytic therapy. Here, biocompatible core-shell MOF CSMnP with two valence states of Mn ion, which could process chemodynamic therapy (CDT), was designed and synthesized. Besides, it could also promote a series of catalytic processes in the tumor microenvironment (TME). CSMnP catalyzed endogenous hydrogen peroxide (H2O2) to oxygen (O2) via catalase-like activity and then combined with the outer layer Mn(II)-PBC to convert O2 into superoxide radicals (•O2-), exhibiting oxidase-like activity. Besides, intracellular glutathione (GSH) could be effectively consumed through the glutathione oxidase-like activity of Mn3+. The occurrence of the cascade reactions effectively amplified the enzymatic production to enhance CDT. Furthermore, the therapeutic effect of CSMnP was improved through the loading of cationic drug DOX. The loading capacity was 11.10 wt %, which was 2.2 times that of Mn(III)-PBC (4.95 wt %), and the release of DOX showed a characteristic response. Therefore, the core-shell MOF with enzyme-like activity had a potential application for tumor combination therapy.
Collapse
Affiliation(s)
- Hongliu Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Panpan Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wenwen Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bing Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wenxin Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
9
|
Mohammadi Rasooll M, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M, Gu Y. Catalytic Application of Functionalized Bimetallic-Organic Frameworks with Phosphorous Acid Tags in the Synthesis of Pyrazolo[4,3- e]pyridines. ACS OMEGA 2023; 8:25303-25315. [PMID: 37483221 PMCID: PMC10357449 DOI: 10.1021/acsomega.3c02580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst. This catalyst was used for the synthesis of pyrazolo[4,3-e]pyridine derivatives as suitable drug candidates. The present study provides new insights into the architecture of novel porous heterogeneous catalysts based on a bimetal-organic framework (bimetal-MOFs). The type of final structures of catalyst and pyrazolo[4,3-e]pyridine derivatives were determined using different techniques such as fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), SEM-elemental mapping, N2 adsorption-desorption isotherm, Barrett-Joyner-Halenda (BJH), thermogravimetry/differential thermal analysis (TG/DTA), 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 401602, Iran
| | - Yanlong Gu
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
10
|
Veleta JM, Arrieta RA, Wu Y, Baeza MA, Castañeda K, Villagrán D. Enhanced Gas Adsorption on Cu 3(BTC) 2 Metal-Organic Framework by Post-Synthetic Cation Exchange and Computational Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37267477 DOI: 10.1021/acs.langmuir.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Increased gas adsorption in a series of post-synthetically modified metal-organic frameworks (MOFs) of the type HKUST-1 was achieved by the partial cation exchange process. Manipulation of post-synthetic conditions demonstrates high tunability in the site substitution and gas adsorption properties during the dynamic equilibrium process. In this work, post-synthetic modification of Cu3(BTC)2 is carried on by exposure to TM2+ solutions (TM = Mn, Fe, Co, Ni) at different time intervals. The crystal structure, composition, and morphology were studied by powder X-ray diffraction, Fourier-transform infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, and scanning electron microscopy. Structural analysis supports the retention of the crystal structure and partial substitution of the Cu metal nodes within the framework. A linear increase in the transmetalation process is observed with Fe and Co with a maximum percentage of 39 and 18%, respectively. Conversely, relatively low cation exchange is observed with Mn having a maximum percentage of 2.40% and Ni with only 2.02%. Gas adsorption measurements and surface area analysis were determined for each species. Interestingly, (Cu/Mn)3(BTC)2 revealed the highest CO2 adsorption capacity of 5.47 mmol/g, compared to 3.08 mmol/g for Cu3(BTC)2. The overall increased gas adsorption can be attributed to the formation of defects in the crystal structure during the cation exchange process. These results demonstrate the outstanding potential of post-synthetic ion exchange as a general approach to fine-tuning the physical properties of existing MOF architectures.
Collapse
Affiliation(s)
- José M Veleta
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Roy A Arrieta
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Yanyu Wu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Miguel A Baeza
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Karen Castañeda
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
11
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
12
|
Du Y, Cao L, Li X, Zhu T, Yan R, Dong WF, Li L. Preparation and application of high-brightness red carbon quantum dots for pH and oxidized L-glutathione dual response. Analyst 2023; 148:2375-2386. [PMID: 37129055 DOI: 10.1039/d3an00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon dots (CDs) with red fluorescence emission are highly desirable for use in bioimaging and trace- substance detection, with potential applications in biotherapy, photothermal therapy, and tumor visualization. Most CDs emit green or blue fluorescence, thus limiting their applicability. We report a novel fluorescent detection platform based on high-brightness red fluorescence emission carbon dots (R-CDs) co-doped with nitrogen and bromine, which exhibit pH and oxidized L-glutathione (GSSG) dual-responsive characteristics. The absolute quantum yield of the R-CDs was as high as 11.93%. We discovered that the R-CDs were able to detect acidic pH in live cells and zebrafish owing to protonation and deprotonation. In addition, GSSG was detected in vitro over a broad linear range (8-200 μM) using the R-CDs with excitation-independent emission. Furthermore, cell imaging and bioimaging experiments demonstrated that the R-CDs were highly cytocompatible and could be used as fluorescent probes to target lysosomes and nucleolus. These studies highlight the promising prospects of R-CDs as biosensing tools for bioimaging and trace-substance detection applications.
Collapse
Affiliation(s)
- Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, 250104, China.
| |
Collapse
|
13
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
14
|
Abbasian M, Khayyatalimohammadi M. Ultrasound-assisted synthesis of MIL-88(Fe) conjugated starch-Fe 3O 4 nanocomposite: A safe antibacterial carrier for controlled release of tetracycline. Int J Biol Macromol 2023; 234:123665. [PMID: 36791936 DOI: 10.1016/j.ijbiomac.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
A constructing antibiotic carrier with a sustained release profile is a promising method to stop long-term bacterial infection, which is of ideal interest in different biomedical fields. To end this, the present study aims to design a novel carrier based on the modification of biopolymeric starch for the rising possible interaction between carrier and antibiotic agent. We established an in-situ ultrasound-assisted method was applied to grow and create MIL-88(Fe) framework in the structure of magnetic polysaccharide (i.e., St/Fe3O4) synthesized by precipitation method resulting in St/Fe3O4/MIL-88(Fe) nanocomposite. It was loaded with a high amount of Tetracycline (TC) through its immersion into the TC aqueous solution. The release profile of TC-loaded St/Fe3O4/MIL-88(Fe) displays a lower initial burst release (about 26 % after 12 h) and followed by a controlled and sustained release (about 73 % up to 168 h) in the simulated physiological environment at pH 7.4. The in vitro cytotoxicity showed good cytocompatibility against Human skin fibroblast (HFF-1) cells. TC-loaded St/Fe3O4/MIL-88(Fe) showed higher antibacterial activity against both S. aureus and E. coli with the MIC value of 64 and 128 μg·mL-1, respectively.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran.
| | | |
Collapse
|
15
|
Chen B, Zhang L, Jiang K. Recent advancements in combining MOFs and natural compounds for cancer therapy. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Barani M, Hajinezhad MR, Shahraki S, Mirinejad S, Razlansari M, Sargazi S, Rahdar A, Díez-Pascual AM. Preparation, characterization, and toxicity assessment of carfilzomib-loaded nickel-based metal-organic framework: Evidence from in-vivo and in-vitro experiments. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
17
|
Akbar MU, Akbar A, Saddozai UAK, Khan MIU, Zaheer M, Badar M. A multivariate metal–organic framework based pH-responsive dual-drug delivery system for chemotherapy and chemodynamic therapy. MATERIALS ADVANCES 2023; 4:5653-5667. [DOI: 10.1039/d3ma00389b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
By combining two different ligands and metals, MOFs can be fine-tuned for effective encapsulation and delivery of two anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Arslan Akbar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| |
Collapse
|
18
|
Mo Z, Pan X, Pan X, Ye L, Hu H, Xu Q, Hu X, Xu Z, Xiong J, Liao G, Yang S. MOF(Fe)-derived composites as a unique nanoplatform for chemo-photodynamic tumor therapy. J Mater Chem B 2022; 10:8760-8770. [PMID: 36255232 DOI: 10.1039/d2tb01691e] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fe-based metal-organic frameworks (MOFs) can be used for chemodynamic therapy (CDT) for tumors due to their unique Fenton-like effects and porous and biodegradable nature. The adsorption and transport of small molecule drugs by their structure has attracted much attention. Herein, MnO2@NH2-MIL101(Fe)@Ce6-F127 nanoparticles (MNMCF NPs) were synthesized using a facile solvothermal strategy. The small molecule photosensitizer Ce6 was adsorbed by MOFs to improve the biocompatibility of Ce6 and give it high bioavailability when injected intravenously. When the MNMCF NPs reached the tumor site, Fe-based MOFs exhibited Fenton-like properties, producing ˙OH and showing CDT effects. MnO2 could specifically respond to produce O2 in a tumor microenvironment, thereby improving the tumor hypoxia state and enhancing the efficacy of photodynamic therapy (PDT) by Ce6. Both the in vitro and in vivo experiments showed that the MNMCF-guided CDT/PDT combination therapy could effectively ablate tumors without the drawbacks of poor tolerability and potential long-term side effects. Therefore, the prepared MNMCF NPs can be used as promising candidates for synergistic CDT/PDT tumor therapy.
Collapse
Affiliation(s)
- Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xinyuan Pan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xiaoli Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, China.
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xiaoxi Hu
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, China.
| | - Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
19
|
Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Pan Y, Dai Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022; 27:7166. [PMID: 36363993 PMCID: PMC9656551 DOI: 10.3390/molecules27217166] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | | | - M. Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
20
|
Bao J, Tu H, Li J, Dong Y, Dang L, Yurievna KE, Zhang F, Xu L. Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy. Front Bioeng Biotechnol 2022; 10:1005719. [PMID: 36277375 PMCID: PMC9582775 DOI: 10.3389/fbioe.2022.1005719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Due to no penetration depth limitation, low cost, and easy control, magnetic nanoparticles mediated magnetic hyperthermia therapy (MHT) has shown great potential in experimental and clinal treatments of various diseases. However, the low heating conversion efficiencies and short circulation times are major drawback for most existing magnetic-thermal materials. Additionally, single MHT treatment always leads to resistance and recurrence. Herein, a highly efficient magnetic-thermal conversion, ferrimagnetic vortex nanoring Fe3O4 coated with hyaluronic acid (HA) nanoparticles (Fe3O4@HA, FVNH NPs) was firstly constructed. Additionally, the doxorubicin (DOX) was successfully enclosed inside the FVNH and released remotely for synergetic magnetic–thermal/chemo cancer therapy. Due to the ferrimagnetic vortex-domain state, the ring shape Fe3O4 displays a high specific absorption rate (SAR) under an external alternating magnetic field (AMF). Additionally, antitumor drug (DOX) can be encapsulated inside the single large hole of FVNH by the hyaluronic acid (HA) shell and quickly released in response the tumor acidic microenvironments and AMF. What’s more, the non-loaded FVNH NPs show good biocompatibility but high cytotoxicity after loading DOX under AMF. Furthermore, the synthesized FVNH can efficiently reduce the transverse relaxation time and enhance negative magnetic resonance imaging (MRI). The impressive in vivo systemic therapeutic efficacy of FVNH was also proved in this work. Taken together, the results of this study demonstrate that the synthesized FVNH NPs offer the promise of serving as multifunctional theranostic nanoplatforms for medical imaging-guided tumor therapies.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Tu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Dong
- School of Education, Pingdingshan University, Pingdingshan, China
| | - Le Dang
- School of Education, Pingdingshan University, Pingdingshan, China
| | - Korjova Elena Yurievna
- Institute of Psychology, The Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang, ; Lei Xu,
| | - Lei Xu
- Department of Clinical Laboratory, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
- *Correspondence: Fengshou Zhang, ; Lei Xu,
| |
Collapse
|
21
|
Sontakke AD, Bhattacharjee A, Fopase R, Pandey LM, Purkait MK. One-pot, sustainable and room temperature synthesis of graphene oxide-impregnated iron-based metal-organic framework (GO/MIL-100(Fe)) nanocarriers for anticancer drug delivery systems. JOURNAL OF MATERIALS SCIENCE 2022; 57:19019-19049. [DOI: 10.1007/s10853-022-07773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2025]
|
22
|
Li Y, Wan Y, Wang Y, Zhang Y. 3D printing MOFs‐based fiber electrodes: A novel platform as electrochemical sensors for heavy metal ions. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanping Li
- Changsha Normal University College of Information Science and Engineering Changsha normal university,NO.9 Teli Road,Changsha, Hunan Province 410100 Changsha CHINA
| | | | | | | |
Collapse
|
23
|
Liu H, Deng Z, Li T, Bu J, Wang D, Wang J, Liu M, Li J, Yang Y, Zhong S. Fabrication, GSH-responsive drug release, and anticancer properties of thioctic acid-based intelligent hydrogels. Colloids Surf B Biointerfaces 2022; 217:112703. [PMID: 35853394 DOI: 10.1016/j.colsurfb.2022.112703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/26/2022]
Abstract
Injectable hydrogels are potential local drug delivery systems since they contain plenty of water and soft like biological tissues. Such hydrogels could be injected directly into the tumor site where the drug is released under the tumor microenvironment. However, drug loaded hydrogels for cancer treatment based on lipoic acid (natural small molecule) have not been exploited. Here, a novel poly(lipoic acid)-poly(ethylene glycol) (PEG-PTA) hydrogels were prepared through a two-step reaction. The hydrogels contained disulfide bonds, so they could be degraded via the thiol exchange reaction with the abundant GSH in the tumor microenvironment, and subsequently release the drug. The results in vitro and at cellular level showed that the hydrogels were degraded and released the drugs only in the presence of GSH. Therefore, the injectable GSH-responsive hydrogels are promising to be served as an intelligent drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Jiahui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Meng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China; Zhuang and Yao Ethnic Medicine Jiont Laboratory of GuangXi University of Chinese Medicine and Central South University, Gui Ke Ji Zi [2021] No. 238, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 PR China; Zhuang and Yao Ethnic Medicine Jiont Laboratory of GuangXi University of Chinese Medicine and Central South University, Gui Ke Ji Zi [2021] No. 238, PR China.
| |
Collapse
|
24
|
Su J, Jing P, Jiang K, Du J. Recent advances in porous MOFs and their hybrids for photothermal cancer therapy. Dalton Trans 2022; 51:8938-8944. [PMID: 35642650 DOI: 10.1039/d2dt01039a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is still one of the most life-threatening diseases in the world. Among the various cancer therapeutic strategies, photothermal therapy (PTT) has attracted considerable attention due to its high treatment efficacy, low invasive burden, and minor side effects. Microporous metal-organic frameworks (MOFs) are potential materials for photothermal tumor treatment thanks to their high surface areas, suitable pore geometry, and easy functionalization. Through designating organic linkers, encapsulating PTT agents and fabricating MOF hybrids, MOF-based treatment platforms have great potential in PTT. In this review, we mainly summarize the recent advances of MOFs in photothermal combined cancer therapy. The present challenges and possible future prospects in this field are also explored.
Collapse
Affiliation(s)
- Jia Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Peng Jing
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China. .,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Wang J, Zhang L, Lin S. Sulfur‐Doped Hydrogen‐Bonded Organic Framework for Improved Oxygen Evolution Reaction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaji Wang
- School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Ling Zhang
- School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Shiwei Lin
- School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| |
Collapse
|
26
|
Ye Y, Zhao Y, Sun Y, Cao J. Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. Int J Nanomedicine 2022; 17:2367-2395. [PMID: 35637838 PMCID: PMC9144878 DOI: 10.2147/ijn.s362759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT), combining photosensitizers (PSs) and excitation light at a specific wavelength to produce toxic reactive oxygen species, has been a novel and promising approach to cancer treatment with non-invasiveness, spatial specificity, and minimal systemic toxicity, compared with conventional cancer treatment. Recently, numerous basic research and clinical research have demonstrated the potential of PDT in the treatment of a variety of malignant tumors, such as esophageal cancer, bladder cancer, and so on. Metal-organic framework (MOF) has been developed as a new type of nanomaterial with the advantages of high porosity, large specific surface area, adjustable pore size, and easy functionalization, which could serve as carriers to load PSs or increase the accumulation of PSs in target cells during PDT. Moreover, active MOFs have the potential to construct multifunctional systems, which are conducive to refining the tumor microenvironment (TME) and implementing combination therapy to improve PDT efficacy. Hence, a comprehensive and in-depth depiction of the whole scene of the recent development of MOFs-based PDT in cancer treatment is desirable. This review summarized the recent research strategies of MOFs-based PDT in antitumor therapy from the perspective of MOFs functions, including active MOFs, inactive MOFs, and their further combination therapies in clinical antitumor treatment. In addition, the bottlenecks and obstacles in the application of MOFs in PDT are also described.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
- Correspondence: Jie Cao; Yong Sun, Email ;
| |
Collapse
|
27
|
Zheng S, Li L, Chen L, Fan Z, Xiang F, Yang Y, Zhang Z, Xiang S. Two Water Stable Phosphate‐Amidinium Based Hydrogen‐Bonded Organic Framework with Proton Conduction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shihe Zheng
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Zhiwen Fan
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University Fuzhou China
| |
Collapse
|
28
|
wang K, Wu M, Cheng B, Li H. Synthesis, characterization, and fluorescence of a highly stable two‐dimensional zinc coordination polymer. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- kuikui wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| | - Mingyan Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| | - Bo Cheng
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| | - Hengbo Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| |
Collapse
|