1
|
Li L, Chen C, Bu Y, Wang J, Shao J, Li A, Lin H, Gao J. Fluorinated 1,7-DO2A-Based Iron(II) Complexes as Sensitive 19F MRI Molecular Probes for Visualizing Renal Dysfunction in Living Mice. Anal Chem 2024; 96:10827-10834. [PMID: 38885015 DOI: 10.1021/acs.analchem.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Kidney diseases have become an important global health concern due to their high incidence, inefficient diagnosis, and poor prognosis. Devising direct methods, especially imaging means, to assess renal function is the key for better understanding the mechanisms of various kidney diseases and subsequent development of effective treatment. Herein, we developed a fluorinated ferrous chelate-based sensitive probe, 1,7-DO2A-Fe(II)-F18 (Probe 1), for 19F magnetic resonance imaging (MRI). This highly fluorinated probe (containing 18 chemically equivalent 19F atoms with a fluorine content at 35 wt %) achieves a 15-time enhancement in signal intensity compared with the fluorine-containing ligand alone due to the appropriately regulated 19F relaxation times by the ferrous ion, which significantly increases imaging sensitivity and reduces acquisition time. Owing to its high aqueous solubility, biostability, and biocompatibility, this probe could be rapidly cleared by kidneys, which provides a means for monitoring renal dysfunction via 19F MRI. With this probe, we accomplish in vivo imaging of the impaired renal dysfunction caused by various kidney diseases including acute kidney injury, unilateral ureteral obstruction, and renal fibrosis at different stages. Our study illustrates the promising potential of Probe 1 for in vivo real-time visualization of kidney dysfunction, which is beneficial for the study, diagnosis, and even stratification of different kidney diseases. Furthermore, the design strategy of our probe is inspiring for the development of more high-performance 19F MRI probes for monitoring various biological processes.
Collapse
Affiliation(s)
- Lingxuan Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuankai Chen
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Bu
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junjie Wang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan Shao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Kaster MA, Caldwell MA, Meade TJ. Development of Ln(III) Derivatives as 19F Parashift Probes. Inorg Chem 2024; 63:9877-9887. [PMID: 38748735 DOI: 10.1021/acs.inorgchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
19F parashift probes with paramagnetically shifted reporter nuclei provide attractive platforms to develop molecular imaging probes. These probes enable ratiometric detection of molecular disease markers using a direct detection technique. Here, we describe a series of trivalent lanthanide (Ln(III)) complexes that are structural analogues of the clinically approved MR contrast agent (CA) ProHance to obtain LnL 19F parashift probes. We evaluated trans-gadolinium paramagnetic lanthanides compared to diamagnetic YL for 19F chemical shift and relaxation rate enhancement. The paramagnetic contribution to chemical shift (δPCS) for paramagnetic LnL exhibited either shifts to lower frequency (δPCS < 0 for TbL, DyL, and HoL) or shifts to higher frequency (δPCS > 0 for ErL, TmL, and YbL) compared to YL 19F spectroscopic signal. Zero-echo time pulse sequences achieved 56-fold sensitivity enhancement for DyL over YL, while developing probe-specific pulse sequences with fast delay times and acquisition times achieved 0.6-fold enhancement in limit of detection for DyL. DyL provides an attractive platform to develop 19F parashift probes for ratiometric detection of enzymatic activity.
Collapse
Affiliation(s)
- Megan A Kaster
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael A Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Gomez Martinez D, Sperling JM, Beck NB, Wineinger HB, Brannon JP, Whitefoot MA, Horne GP, Albrecht-Schönzart TE. Comparison of Americium(III) and Neodymium(III) Monothiophosphate Complexes. Inorg Chem 2024; 63:9237-9244. [PMID: 38722713 DOI: 10.1021/acs.inorgchem.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.
Collapse
Affiliation(s)
- Daniela Gomez Martinez
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph M Sperling
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nicholas B Beck
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hannah B Wineinger
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jacob P Brannon
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan A Whitefoot
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
- Center for Radiation Chemistry Research, Idaho National Laboratory, Idaho Falls, P.O. Box 1625, Idaho 83415, United States
| |
Collapse
|
4
|
Bunda S, Lihi N, Szaniszló Z, Esteban-Gómez D, Platas-Iglesias C, Kéri M, Papp G, Kálmán FK. Bipyridil-based chelators for Gd(III) complexation: kinetic, structural and relaxation properties. Dalton Trans 2023; 52:17030-17040. [PMID: 37937450 DOI: 10.1039/d3dt02806b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In the last 20 years, research in the field of MRI (magnetic resonance imaging) contrast agents (CAs) has been intensified due to the emergence of a disease called nephrogenic systemic fibrosis (NSF). NSF has been linked to the in vivo dissociation of certain Gd(III)-based compounds applied in MRI as CAs. To prevent the dechelation of the probes after intravenous injection, the improvement of their in vivo stability is highly desired. The inertness of the Gd(III) chelates can be increased through the rigidification of the ligand structure. One of the potential ligands is (2,2',2'',2'''-(([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetraacetic acid) (H4DIPTA), which has been successfully used as a fluorescent probe for lanthanides; however, it has never been considered as a potential chelator for Gd(III) ions. In this paper, we report the thermodynamic, kinetic and structural features of the complex formed between Gd(III) and DIPTA. Since the solubility of the [Gd(DIPTA)]- chelate is very low under acidic conditions, hampering its thermodynamic characterization, we can only assume that its stability is close to that determined for the structural analogue [Gd(FENTA)]- (H4FENTA: (1,10-phenanthroline-2,9-diyl)bis(methyliminodiacetic acid)), which is similar to that determined for the agent [Gd(DTPA)]2- routinely used in clinical practice. Unfortunately, the inertness of [Gd(DIPTA)]- is significantly lower (t1/2 = 1.34 h) than that observed for [Gd(EGTA)]- and [Gd(DTPA)]2- as a result of its spontaneous dissociation pathway during dechelation. The relaxivity values of [Gd(DIPTA)]- are comparable with those of [Gd(FENTA)]- and somewhat higher than the values characterizing [Gd(DTPA)]2-. Luminescence lifetime measurements indicate the presence of one water molecule (q = 1) in the inner sphere of the complex with a relatively high water exchange rate (k298ex = 43(5) × 106 s-1). DFT calculations suggest a rigid distorted tricapped trigonal prismatic polyhedron for the Gd(III) complex. On the basis of these results, we can conclude that the bipyridine backbone is not favourable with respect to the inertness of the chelate.
Collapse
Affiliation(s)
- Szilvia Bunda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Norbert Lihi
- HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsófia Szaniszló
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Mónika Kéri
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gábor Papp
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
5
|
Martinon TLM, Ramakrishnam Raju MV, Pierre VC. Kinetically Inert Macrocyclic Europium(III) Receptors for Phosphate. Inorg Chem 2023; 62:10064-10076. [PMID: 37339454 PMCID: PMC10389169 DOI: 10.1021/acs.inorgchem.2c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The significant role that phosphate plays in environmental water pollution and biomedical conditions such as hyperphosphatemia highlights the need to develop robust receptors that can sequester the anion effectively and selectively from complex aqueous media. Toward that goal, four macrocyclic tris-bidentate 1,2-hydroxypyridonate (HOPO) europium(III) complexes containing either a cyclen, cyclam, TACN, or TACD ligand cap were synthesized and evaluated as phosphate receptors. The solubility of EuIII-TACD-HOPO in water was insufficient for luminescent studies. Whereas EuIII-cyclen-HOPO is eight coordinate with two inner-sphere water molecules, both EuIII-cyclam-HOPO and EuIII-TACN-HOPO are nine coordinate with three inner-sphere water molecules, suggesting that the two coordination states are very close in energy. As observed previously with linear analogues of tripodal HOPO complexes, there is no relationship between the number of inner-sphere water molecules and the affinity of the complex for phosphate. Whereas all three complexes do bind phosphate, EuIII-cyclen-HOPO has the highest affinity for phosphate with the anion displacing both of its inner-sphere water molecules. On the other hand, only one or two of the three inner-sphere water molecules of EuIII-TACN-HOPO and EuIII-cyclam-HOPO are displaced by phosphate, respectively. All three complexes are highly selective for phosphate over other anions, including arsenate. All three complexes are highly stable. EuIII-cyclen-HOPO and, to a lesser extent, EuIII-TACN-HOPO are more kinetically inert than the linear EuIII-Ser-HOPO. EuIII-cyclam-HOPO, on the other hand, is not. This study highlights the significant effect that minor changes in the ligand cap can have on both the ligand exchange rate and affinity for phosphate of tripodal 1,2-dihydroxypyridinonate complexes.
Collapse
Affiliation(s)
- Thibaut L M Martinon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Hou Z, Huang Y, Ruan Y, Xu H, Tan Y, Lin LR, Wu ZY. Reversible trans-to- cis photoisomerization and irreversible photocyclization reactions of a Co-coordinated stilbene derivative on chiral di-β-diketonate lanthanide complexes. RSC Adv 2023; 13:2269-2282. [PMID: 36741132 PMCID: PMC9837704 DOI: 10.1039/d2ra07133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Six lanthanide complexes constructed from two chiral β-diketonates (d/l-fbc = 3-heptafluorobutyryl-(+)/(-)-camphorate), the stilbene derivative (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (L), a trifluoroacetate anion (CF3CO2 -), and one water molecule, namely [Ln(d/l-fbc)2(L)(CF3CO2)]·H2O (LnC57H54F17N4O8, Ln = La (1, d-fbc), La (2, l-fbc), Sm (3, d-fbc), Eu (4, d-fbc), Eu (5, l-fbc), and Tb (6, d-fbc), were synthesized and characterized by single-crystal X-ray diffraction, 1H-NMR, elemental analysis, IR and UV-vis spectroscopy, and thermal gravimetric analysis. The photoisomerization reactions of these complexes were systematically studied by means of experimental and theoretical calculations. Crystals of complexes 1, 2, 3, and 4 were obtained and belong to the monoclinic crystal system and the C2 chiral space group. The Λ- and Δ-diastereomers coexist in their crystals and no apparent bisignate couplets are observed in their ECD spectra. Among the complexes, the photocyclization reaction is followed by the trans-to-cis photoisomerization reaction and competes with the trans-to-cis photoisomerization, then the photocyclization reaction continues. The photocyclization reaction is irreversible in this stilbene derivative and is delayed in the lanthanide complexes. These results provide a viable strategy for the design of promising new stilbene-attached dual-functional lanthanide-based optical-switching materials.
Collapse
Affiliation(s)
- Ziting Hou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yanji Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yushan Ruan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Han Xu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical UniversityKunming650500P. R. China
| | - Yu Tan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Li-Rong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Zhen-yi Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| |
Collapse
|
7
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
8
|
Martinon TLM, Pierre VC. Luminescent Lanthanide Probes for Inorganic and Organic Phosphates. Chem Asian J 2022; 17:e202200495. [PMID: 35750633 PMCID: PMC9388549 DOI: 10.1002/asia.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Indexed: 11/09/2022]
Abstract
Inorganic and organic phosphates-including orthophosphate, nucleotides, and DNA-are some of the most fundamental anions in cellular biology, regulating numerous processes of both medical and environmental significance. The characteristic long lifetimes of emitting lanthanides, including the brighter europium(III) and terbium(III), make them ideally suited for the development of molecular probes for the detection of phosphates directly in complex aqueous media. Moreover, given their high oxophilicity and the exquisite sensitivity of their quantum yields to their hydration number, those luminescent lanthanides are perfect for the detection of phosphates. Herein we discuss the principles that have guided the recent developments of molecular probes selective for inorganic or organic phosphates and how these lanthanide complexes facilitate the study of numerous biological processes.
Collapse
Affiliation(s)
- Thibaut L. M. Martinon
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| | - Valérie C. Pierre
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| |
Collapse
|