1
|
Wei Q, Liu J, Wu L, Chen F, Ye Y, Zhang S, Zhu Y, Chen Y, You M, Liao Q, Lin M, Chen H. Multiple Electron Transfer in Semiconductive Ternary D-D'-A Metal-Organic Framework for Enhanced X-Ray Detection and Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405932. [PMID: 39171771 DOI: 10.1002/smll.202405932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Semiconductive metal-organic frameworks (MOFs) with donor-acceptor (D-A) characteristics have garnered attractive attention due to their capacity for separating and transferring photogenerated charges, making them promising candidates for high-performance X-ray detectors. However, the low charge transfer efficiency between the metal nodes and organic ligands limits the X-ray-to-electricity conversion efficiency of these materials. Herein, an additional photoactive donor (D') is introduced by incorporating a heavy atom-containing polyoxometalate (POM) [α-SiW12O40]4- into a binary {[Ni·bcbp·(H2O)2]·(H2O)4·Cl}n (Ni-bcbp, bcbp: H2bcbp·2Cl = 1,1'-bis(4-carboxyphenyl)(4,4'-bipyridinium) dichloride) MOF, resulting in a semiconductive ternary D-D'-A framework {[Ni2(bcbp)2·(H2O)4·(DMA)]·(SiW12O40)}n (SiW@Ni-bcbp, DMA: dimethylacetamide). The obtained material features an unprecedented porous 8-connected bcu-net structure that accommodates nanoscale [α-SiW12O40]4- counterions, displaying uncommon optoelectronic responses. In contrast to binary Ni-bcbp, the SiW@Ni-bcbp framework exhibits distinctive photochromism and robust X-ray responsiveness, which can be attributed to the synergistic effects of the electron reservoir and multiple photoinduced electron transfer originating from the POMs. As a result, the X-ray detector based on SiW@Ni-bcbp demonstrates a sensitivity of 5741.6 µC Gyair -1 cm-2 with a low detection limit of 0.49 µGyair s-1. Moreover, the devices demonstrated the capability of producing clearness X-ray images, providing a feasible and stable solution for constructing high-performance direct X-ray detectors.
Collapse
Affiliation(s)
- Qingsong Wei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyan Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Liang Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fuhai Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuanji Ye
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuquan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanan Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, P. R. China
| | - Yong Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Minghua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meijin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
2
|
Huang L, Li XN, Shen Y, Hua Y, Song RH, Cui WB, Li ZY, Zhang H. Tunable photo/thermochromic properties of Cd(II)-viologen coordination polymers modulated by coordination modes for flexible imaging films and anti-counterfeiting. Dalton Trans 2024; 53:8803-8811. [PMID: 38716557 DOI: 10.1039/d4dt00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two photochromic Cd(II)-CPs were obtained based on the viologen ligand using different synthetic routes, named {[Cd4(p-BDC)4(CPB)2(H2O)2]·2H2O·EtOH}n (1) and {[Cd(p-BDC)(CPB)(H2O)]·(L)·DMF}n (2) (p-H2BDC = 1,4-benzene-dicarboxylate, HCPB·Cl = 1-(4-carboxyphenyl)-4,4'-bipyridinium·Cl, L = 2,4-dinitrochlorobenzene, and DMF = N,N-dimethylformamide), respectively. Due to different coordination modes, the two Cd(II)-CPs show different structures. Compound 1 exhibits a three-dimensional (3D) framework with bimetallic nodes, while compound 2 displays a 2-fold interpenetrated (4,4) net topology. Notably, the two Cd(II)-CPs exhibit substantial disparities in photo/thermochromism, which can be attributed to variations in donor-acceptor (D-A) distances arising from structural differences. Compound 1 showed visually sensitive photo- and thermochromic behavior due to multi-pathway electron transfer and short D-A distances, which is relatively rare in electron-transfer type photochromic systems. In contrast, 2 only demonstrates insensitive photochromic behavior, with a slight deepening of the color observed after 2 hours of UV light, which is due to the mono-pathway electron transfer and long D-A distance. Moreover, we first combined Cd(II)-viologen CPs with polydimethylsiloxane (PDMS) to prepare a 1@PDMS flexible UV imaging film. 1@PDMS exhibits excellent bendability and stretchability and maintains good photochromic properties after 100 bending cycles. To demonstrate the rapid color response and distinct color contrast of 1, its application in anti-counterfeiting is also demonstrated.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Zi-Yi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
3
|
Zhang S, Lin H, Sun P, Zhou Y, Zhang Q, Sang T, Tuo A, Xiong K, Gai Y. Cationic Europium-Organic Framework for Chromatographic Column Separation of Ionic Dyes and Stimuli-Responsive Chromic Properties. Inorg Chem 2024; 63:9288-9296. [PMID: 38724469 DOI: 10.1021/acs.inorgchem.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A novel 3D europium-based cationic framework (Eu-CMOF) has been constructed solvothermally by employing a viologen derivative as an organic functional building unit. Notably, Eu-CMOF demonstrates its capability as a proficient aqueous-phase ion-exchange host, facilitating the remarkable rapid chromatographic column separation of new coccine and malachite green (NC3-/MG+), as well as new coccine and methylene blue (NC3-/MLB+), in mere 2 to 4 min. Adsorption thermodynamics and kinetics of anionic dyes demonstrate that Eu-CMOF exhibits a higher adsorption capacity for NC3-, as evaluated by the Langmuir model, reaching a value of 173 mg·g-1. The pseudo-second-order rate constant is determined to be 3.84 × 10-3 mg-1·g·min-1. Additionally, Eu-CMOF displays reversible photochromic and amine- and ammonia-induced vapochromic behaviors. Further mechanistic studies reveal that these chromic behaviors are primarily attributed to the generation of free viologen radical stimulated by Xe-light or electron-rich amine/ammonia. This research contributes to the development of advanced materials with applications in rapid chromatographic separation and stimuli-responsive chromic properties, showcasing the potential of Eu-CMOF as a versatile platform for practical applications.
Collapse
Affiliation(s)
- Shi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Haoran Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Peng Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yudie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Tingting Sang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Anna Tuo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kecai Xiong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yanli Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
4
|
Dai W, Li X, He C, Li X, Kong C, Cheng F, Liu JJ. Polyoxometalate-dependent Photocatalytic Activity of Radical-doped Perylenediimide-based Hybrid Materials. Chemistry 2024; 30:e202303996. [PMID: 38165074 DOI: 10.1002/chem.202303996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inorganic-organic hybrid materials are a kind of multiduty materials with high crystallinity and definite structures, built from functional inorganic and organic components with highly tunable photochemical properties. Perylenediimides (PDIs) are a kind of strong visible light-absorbing organic dyes with π-electron-deficient planes and photochemical properties depending on their micro-environment, which provides a platform for designing tunable and efficient hybrid photocatalytic materials. Herein, four radical-doped PDI-based crystalline hybrid materials, Cl4-PDI⋅SiW12O40 (1), Cl4-PDI⋅SiMo12O40 (2), Cl4-PDI⋅PW12O40 (3), and Cl4-PDI⋅PMo12O40 (4), were attained by slow diffusion of polyoxometalates (POMs) into acidified Cl4-PDI solutions. The obtained PDI-based crystalline hybrid materials not only exhibited prominent photochromism, but also possessed reactive organic radicals under ambient conditions. Furthermore, all hybrid materials could be easily photoreduced to their radical anions (Cl4-PDI⋅-), and then underwent a second photoexcitation to form energetic excited state radical anions (Cl4-PDI⋅-*). However, experiments and theoretical calculations demonstrated that the formed energetic Cl4-PDI⋅-* showed unusual POM-dependent photocatalytic efficiencies toward the oxidative coupling of amines and the iodoperfluoroalkylation of alkenes; higher photocatalytic efficiencies were found for hybrid materials 1 (anion: SiW12O40 4-) and 2 (anion: SiMo12O40 4-) compared to 3 (anion: PW12O40 3-) and 4 (anion: PMo12O40 3-). The photocatalytic efficiencies of these hybrid materials are mainly controlled by the energy differences between the SOMO-2 level of Cl4-PDI⋅-* and the LUMO level of the POMs. The structure-photocatalytic activity relationships established in present work provide new research directions to both the photocatalysis and hybrid material fields, and will promote the integration of these areas to explore new materials with interesting properties.
Collapse
Affiliation(s)
- Weijun Dai
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin, 650504, P. R. China
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Chixian He
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Xiang Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Ci Kong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| |
Collapse
|
5
|
Liu JY, Zhang XH, Fang H, Zhang SQ, Chen Y, Liao Q, Chen HM, Chen HP, Lin MJ. Novel Semiconductive Ternary Hybrid Heterostructures for Artificial Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302197. [PMID: 37403302 DOI: 10.1002/smll.202302197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.
Collapse
Affiliation(s)
- Jing-Yan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiang-Hong Zhang
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui-Peng Chen
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
6
|
Zheng Z, Lu H, Hou H, Bai Y, Qiu J, Guo X, Wang JQ, Lin J. Stepwise Crystallization of Millimeter Scale Thorium Cluster Single Crystals as a Bifunctional Platform for X-ray Detection and Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206782. [PMID: 36534835 DOI: 10.1002/smll.202206782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Monitoring and shielding of X-ray radiation are of paramount importance across diverse fields. However, they are frequently realized in separate protocols and a single material integrating both functions remained elusive. Herein, a hexanuclear cluster [Th6 (µ3 -OH)4 (µ3 -O)4 (H2 O)6 ](pba)6 (HCOO)6 (Th-pba-0D) incorporating high-Z thorium cations and 3-(pyridin-4-yl)benzoate ligands that can function as a brand-new dual-module platform for visible detection and efficient shielding of ionizing radiation is demonstrated. Th-pba-0D exhibits rather unique reversible radiochromism upon alternating X-ray and UV irradiation. Moreover, the millimeter scale crystal size of Th-pba-0D renders the penetration depth of X-ray visible to naked eye and leads to the unearthing of its high X-ray attenuation efficiency. Indeed, the shielding efficacy of Th-pba-0D is comparable to that of lead glass containing 40% PbO, and a Th-pba-0D pellet with a thickness of merely 1.2 mm can shield 99.73% X-ray (16 keV). These studies portend the possible utilization of thorium-bearing materials as a bifunctional platform for radiation detection and shielding.
Collapse
Affiliation(s)
- Zhaofa Zheng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Fulmer 630, Pullman, WA, 99164-4630, USA
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Yang DD, Zheng HW, Meng FQ, Shi YS, Xiao T, Jin B, Fang YH, Tan HW, Zheng XJ. Enhancement of Long-Lived Persistent Room-Temperature Phosphorescence and Anion Exchange with I - and SCN - via Metal-Organic Hybrid Formation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1495-1504. [PMID: 36579462 DOI: 10.1021/acsami.2c15611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An in-depth understanding of structure-property relationships and the construction of multifunctional stimuli-responsive materials are still difficult challenges. Herein, we discovered a 4,4'-bipyridinium derivative with both photochromism and dynamic afterglow at 77 K for the first time. A one-dimensional (1D) Cd(II) coordination polymer (1) assembled by only a 4,4'-bipyridinium derivative and cadmium chloride showed photochromism, room-temperature phosphorescence (RTP), and electrochromism. Interestingly, we found that 1 underwent single-crystal-to-single-crystal transformation during the anion exchange process, and the color of the crystal changed from colorless to yellow (1-SCN-) within 10 min. Complex 1 exhibited photochromism, whereas 1-SCN- did not. The difference in the photochromic behavior between the two complexes was ascribed to the electron transfer pathway between the carboxylate groups and viologen. The DFT calculation based on the crystal structure of 1-SCN- indicated that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were mainly located on bipyridine and cadmium atoms, eliminating the possibility of electron transfer, whereas for complex 1, electron transfer was probable from O and Cl atoms to pyridinium N atoms in viologen as demonstrated by density of states (DOS) calculations. In addition, complex 1 was successfully made into test paper for the rapid detection of I- and SCN- and displayed potential applications in inkless printing, multiple encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Fan-Qi Meng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bo Jin
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| | - Yu-Hui Fang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hong-Wei Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Liu Z, Li X, Yin W, Chen J, Li C, Cheng F, Liu JJ. Perylenediimide-Based Hybrid Materials for the Iodoperfluoroalkylation of Alkenes and Oxidative Coupling of Amines: Bay-Substituent-Mediated Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53090-53100. [PMID: 36383738 DOI: 10.1021/acsami.2c17197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inorganic-organic donor-acceptor hybrid compounds are an emerging class of multifunctional crystalline materials with well-defined structures built from semiconductive inorganic and organic components. Perylenediimides (PDIs) are a prominent class of electron-deficient organic dyes, which can undergo consecutive photoinduced electron transfers to generate doublet excited-state radical anions for photoredox-inert chemical bonds. Thus, this is an excellent organic component for building hybrid materials to study the structure-property relationships in organic synthesis. In this context, three molecular structure modified PDI-based hybrid materials, (Me4-PDI)2·SiW12O40 (1), (Me4-Cl4-PDI)2·SiW12O40 (2), and (Me4-Br2-PDI)1.5·HSiW12O40 (3), were studied. By the introduction of different substituent groups at the bay positions, these three hybrid materials were successfully fabricated to investigate the impact of substituent groups on the photocatalytic activity. As expected, all PDI-based hybrid materials easily underwent consecutive photoexcitation to obtain their excited-state radical anions. However, experimental and theoretical analyses showed that these obtained excited-state radical anions displayed unusual bay-substituent-group-dependent photocatalytic conversion activities for the iodoperfluoroalkylation of alkenes and oxidative coupling of amines. Higher conversion yields were obtained for complexes 1 and 3 (bay-unsubstituted and Br-substituted PDI hybrid materials, respectively), and lower conversion was observed for complex 2 (Cl-substituted PDI hybrid material), which is attributed to the excited-state SOMO-1 energies of the PDI radical anions. The structure-property relationship established in this work provides insights for the further exploration of bay-substituted PDI hybrid materials in other small-molecule photocatalytic transformations.
Collapse
Affiliation(s)
- Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Wenxiu Yin
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian Chen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chao Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
9
|
Chen H, Chen J, Li M, You M, Chen Q, Lin M, Yang H. Recent advances in metal-organic frameworks for X-ray detection. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Zhang B, Qian BB, Li CT, Li XW, Nie HX, Yu MH, Chang Z. Donor–acceptor systems in metal–organic frameworks: design, construction, and properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this highlight, the development of donor acceptor (D–A) MOF was briefly reviewed and summarized in the aspects of design, construction, and properties. Also, an outlook about the research and potential application of D–A MOF has been presented.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Bin-Bin Qian
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Chang-Tai Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xing-Wang Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|