1
|
Cui Y, Lin J. Metal-organic frameworks as advanced platforms for radionuclide detection. Chem Commun (Camb) 2025; 61:5395-5409. [PMID: 40104900 DOI: 10.1039/d5cc00711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The development of nuclear energy has significantly increased the prevalence of artificial radionuclides, mainly generated through nuclear fission processes, alongside naturally occurring radionuclides. These radionuclides, encompassing a wide array of elements, including 3H, 85Kr, 90Sr, 99Tc, 129/131I, 137Cs, 222Rn, 232Th, and 235/238U, exist in diverse chemical forms such as gases, ions, and molecular species, posing substantial risks to human health and environmental safety. Consequently, the precise detection and selective separation of these radionuclides are of paramount importance for the timely identification and mitigation of associated hazards. This review explores the application of metal-organic frameworks (MOFs) as advanced platforms for radionuclide detection, utilizing their structural tunability and versatile functionality. The discussion is systematically organized based on the chemical forms of radionuclides, categorizing them into gaseous, cationic, and anionic species. Key detection mechanisms employed by MOFs, including fluorescence sensing (via quenching, enhancement, and fluorochromism), scintillation techniques, colorimetric sensing, electrochemical sensing, and so on, are thoroughly examined. These approaches are analysed to elucidate their principles, practical implementations, and limitations.
Collapse
Affiliation(s)
- Yunyi Cui
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
2
|
Wei W, Li X, Zhang YY, Zhang JW. Rational construction of luminescent Eu-doped Y-MOF for ratiometric temperature sensing. RSC Adv 2024; 14:28340-28344. [PMID: 39239281 PMCID: PMC11375508 DOI: 10.1039/d4ra05796a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Introducing lanthanide(iii) ions into a MOF structure is one of the most effective strategies to construct luminescent MOFs with multiple emission centers for fluorescent applications. In this work, a functionalized Eu3+-doped Y-MOF (Eu@SNNU-325) was constructed by using a cation exchange strategy. The photoluminescence result shows that Eu@SNNU-325 exhibits a unique emission spectrum, namely, the absence of the organic ligand peak and the very strong Y3+/Eu3+ characteristic peaks. Interestingly, the smart luminescent Eu@SNNU-325 as a ratiometric thermometer for temperature sensing has good self-calibrated ability and a high maximum relative sensitivity (S m) value (1.2% K-1 at 260 K). This work presents the construction of a smart Eu3+-functionalized Y-MOF thermometer through a cation exchange strategy, providing a good idea for the future development and design of Y-MOF thermometers.
Collapse
Affiliation(s)
- Wei Wei
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Yong-Ya Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| |
Collapse
|
3
|
Peng L, Guo H, Wu N, Wang M, Hao Y, Ren B, Hui Y, Ren H, Yang W. A dual-functional fluorescence probe CDs@ZIF-90 for highly specific detection of Al 3+ and Hg 2+ in environmental water samples. Anal Chim Acta 2024; 1288:342171. [PMID: 38220302 DOI: 10.1016/j.aca.2023.342171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
In recent years, the escalating water pollution has resulted in serious harm to human health and ecological environment due to the excessive discharge of toxic metal ions such as Al3+ and Hg2+. Therefore, it is crucial to develop a simple, efficient, and rapid detection method for monitoring the levels of the metal ions in water environment to ensure public health and ecological safety. In this study, carbon dots (CDs) containing heteroatom Si were successfully synthesized by the solvothermal method. Subsequently, a novel dual-functional fluorescent sensor (CDs@ZIF-90) was constructed by integrating CDs with zeolitic imidazolate framework-90 (ZIF-90). The fluorescent composite CDs@ZIF-90 showed outstanding optical properties and excellent structural and luminescence stability in aqueous medium. Particularly, its fluorescence at 453 nm can be remarkably enhanced by Al3+ and quenched upon exposure to Hg2+. As a result, the CDs@ZIF-90 was applied in sensitive and selective determination of Al3+ and Hg2+ ions with wide linear ranges (1-200 μM and 0.05-240 μM) and low detection limits (0.81 μM and 19.6 nM). Moreover, a convenient and rapid fluorescence test strip was also successfully prepared for visual detection of Al3+ and Hg2+ ions. This work is the first try to use the CDs@ZIF-90 fluorescence sensing material for highly sensitive and selective determination of Al3+ and Hg2+ based on "turn-on" and "turn-off" dual modes, respectively and it provides a new idea for monitoring quality of drinking water and environmental water. It is of great significance for human health and environmental protection.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yanrui Hao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Henglong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
4
|
Cao J, Duan S, Zhao Q, Chen G, Wang Z, Liu R, Zhu L, Duan T. Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12910-12919. [PMID: 37649325 DOI: 10.1021/acs.langmuir.3c02041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effective capture and deposition of radioactive iodine in the spent fuel reprocessing process is of great importance for nuclear safety and environmental protection. Three-dimensional (3D) fiber felt with structural diversity and tunability is applied as an efficient adsorbent with easy separation for iodine capture. Here, a bismuth-based silica aerogel fiber felt (Bi@SNF) was synthesized using a facile hydrothermal method. Abundant and homogeneous Bi nanoparticles greatly enhanced the adsorption and immobilization of iodine. Notably, Bi@SNF demonstrated a high capture capacity of 982.9 mg/g by forming stable BiI3 and Bi5O7I phases, which was about 14 times higher than that of the unloaded material. Fast uptake kinetics and excellent resistance to nitric acid and radiation were exhibited as a result of the 3D porous interconnected network and silica aerogel fiber substrate. Adjustable size and easy separation and recovery give the material potential as a radioactive iodine gas capture material.
Collapse
Affiliation(s)
- Jiaxin Cao
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Siyihan Duan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Guangyuan Chen
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Zeru Wang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Ruixi Liu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
5
|
Mei D, Yan B. Flumequine-mediated fluorescent zeolitic imidazolate framework functionalized by Eu 3+ for sensitive and selective detection of UO 22+, Ni 2+ and Cu 2+ in nuclear wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130822. [PMID: 36680898 DOI: 10.1016/j.jhazmat.2023.130822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Currently, antibiotics and heavy metal contaminants have posed a great threat for ecological security and human health. Herein, the lanthanide functionalized ZIF (named ZIF-90-PABA-Eu) is constructed by coordinating with Eu3+ via p-aminobenzoic acid intermediate. Due to the excellent fluorescence properties, the novel fluorescent probe can selectively monitor flumequine based on "turn on" mode. Furthermore, the obtained new material (named ZIF-90-PABA-Eu-Flu) can be used as "turn off" sensor for selective detection of both radioactive and nonradioactive heavy metal ions (UO22+, Ni2+ and Cu2+) which are the main component of nuclear industrial wastewater. ZIF-90-PABA-Eu-Flu shows ultra-short fluorescence response time (3 s) and ultra-low limit of detection (9.0 × 10-3, 1.3 × 10-2 and 6.1 × 10-4 ppm) for three metal ions, which may be attributed to its good affinity with UO22+, Ni2+ and Cu2+. Moreover, principal component analysis (PCA) is applied to distinguish the three metal ions. Additionally, the possible sensing mechanism is investigated by the UV-vis spectra, luminescence lifetimes and theoretical calculation analysis. Based on these results, ZIF-90-PABA-Eu possesses promising potential in practical application and provides insight for the design of novel probes to continuously monitor flumequine, radioactive and nonradioactive heavy metal ions.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
6
|
Mei D, Yan B. Numerical Recognition System and Ultrasensitive Fluorescence Sensing Platform for Al 3+ and UO 22+ Based on Ln (III)-Functionalized MOF-808 via Thiodiglycolic Acid Intermediates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16882-16894. [PMID: 36943811 DOI: 10.1021/acsami.3c00685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Continuous accumulation of Al3+ in the human body and unintended leakage of UO22+ have posed a great threat to human health and the global environment; thus searching an efficient probe for the detection of Al3+ and UO22+ is of great importance. Herein, we designed and synthesized two hydrolytically stable Eu3+- and Tb3+-functionalized MOF materials Eu@MOF-808-TDA and Tb@MOF-808-TDA via thiodiglycolic acid (TDA) intermediates by the postsynthetic modification method. Among them, Tb@MOF-808-TDA was applied to construct numerical recognition systems of multiples of three and four by the combination of fluorescent signals, hierarchical cluster analysis, and logical gates. In addition, Tb@MOF-808-TDA exhibits good selectivity and sensitivity for the detection of Al3+ and UO22+. The detection limit is calculated to be 0.085 ppm for Al3+ and 0.082 ppm for UO22+ in aqueous solutions, which is lower than or close to that of latest reported Ln-MOFs. Moreover, the probe shows excellent hydrolytic stability and luminescence stability in the pH range of 4-11, further providing solid evidence for the practical application of Tb@MOF-808-TDA. More importantly, a mixed matrix hydrogel PVA-Tb@MOF-808-TDA was prepared to achieve the visual detection of Al3+, which broadens the potential in real-world sensing applications.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
7
|
Xiao Y, Zhu CM, Liang RB, Huang YL, Hai CH, Chen JR, Li M, Zhong JJ, Huang XC. Building a cobaloxime-based metal-organic framework for photocatalytic aerobic oxidation of arylboronic acids to phenols. Chem Commun (Camb) 2023; 59:2239-2242. [PMID: 36723203 DOI: 10.1039/d2cc06945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, the design and synthesis of an unprecedented cobaloxime-based zirconium metal-organic framework (Zr-TCPCo) with an she net is reported. This heterogeneous material as a photocatalyst exhibits excellent catalytic activity for aerobic oxidation of arylboronic acids to phenols. Recycling experiments demonstrate the stability and reusability of Zr-TCPCo as a robust catalyst.
Collapse
Affiliation(s)
- Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chun-Hua Hai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Jian-Rui Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
8
|
Highly Efficient Iodine Capture by Hydrophobic Bismuth-based Chrysotile Membrane from Humid Gas Streams. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Halder A, Bain DC, Oktawiec J, Addicoat MA, Tsangari S, Fuentes-Rivera JJ, Pitt TA, Musser AJ, Milner PJ. Enhancing Dynamic Spectral Diffusion in Metal-Organic Frameworks through Defect Engineering. J Am Chem Soc 2023; 145:1072-1082. [PMID: 36595477 PMCID: PMC10022273 DOI: 10.1021/jacs.2c10672] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The crystal packing of organic chromophores has a profound impact on their photophysical properties. Molecular crystal engineering is generally incapable of producing precisely spaced arrays of molecules for use in photovoltaics, light-emitting diodes, and sensors. A promising alternative strategy is the incorporation of chromophores into crystalline metal-organic frameworks (MOFs), leading to matrix coordination-induced emission (MCIE) upon confinement. However, it remains unclear how the precise arrangement of chromophores and defects dictates photophysical properties in these systems, limiting the rational design of well-defined photoluminescent materials. Herein, we report new, robust Zr-based MOFs constructed from the linker tetrakis(4-carboxyphenyl)ethylene (TCPE4-) that exhibit an unexpected structural transition in combination with a prominent shift from green to blue photoluminescence (PL) as a function of the amount of acid modulator (benzoic, formic, or acetic acid) used during synthesis. Time-resolved PL (TRPL) measurements provide full spectral information and reveal that the observed hypsochromic shift arises due to a higher concentration of linker substitution defects at higher modulator concentrations, leading to broader excitation transfer-induced spectral diffusion. Spectral diffusion of this type has not been reported in a MOF to date, and its observation provides structural information that is otherwise unobtainable using traditional crystallographic techniques. Our findings suggest that defects have a profound impact on the photophysical properties of MOFs and that their presence can be readily tuned to modify energy transfer processes within these materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Matthew A. Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, United Kingdom
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
10
|
Zhao Q, Liao C, Chen G, Liu R, Wang Z, Xu A, Ji S, Shih K, Zhu L, Duan T. In Situ Confined Synthesis of a Copper-Encapsulated Silicalite-1 Zeolite for Highly Efficient Iodine Capture. Inorg Chem 2022; 61:20133-20143. [PMID: 36426769 DOI: 10.1021/acs.inorgchem.2c03582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effective capture of radioactive iodine is highly desirable for decontamination purposes in spent fuel reprocessing. Cu-based adsorbents with a low cost and high chemical affinity for I2 molecules act as a decent candidate for iodine elimination, but the low utilization and stability remain a significant challenge. Herein, a facile in situ confined synthesis strategy is developed to design and synthesize a copper-encapsulated flaky silicalite-1 (Cu@FSL-1) zeolite with a thickness of ≤300 nm. The maximum iodine uptake capacity of Cu@FSL-1 can reach 625 mg g-1 within 45 min, which is 2 times higher than that of a commercial silver-exchanged zeolite even after nitric acid and NOX treatment. The Cu nanoparticles (NPs) confined within the zeolite exert superior iodine adsorption and immobilization properties as well as high stability and fast adsorption kinetics endowed by the all-silica zeolite matrix. This study provides new insight into the design and controlled synthesis of zeolite-confined metal adsorbents for efficient iodine capture from gaseous radioactive streams.
Collapse
Affiliation(s)
- Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Changzhong Liao
- Key Laboratory of New Processing for Nonferrous Metal and Materials (Ministry of Education), School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Anhu Xu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiyin Ji
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 852, HKSAR, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
11
|
Cui WR, Chen YR, Xu W, Liu K, Qiu WB, Li Y, Qiu JD. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|