1
|
Kusumoto S, Atoini Y, Koide Y, Chainok K, Hayami S, Kim Y, Harrowfield J, Thuéry P. Nanotubule inclusion in the channels formed by a six-fold interpenetrated, triperiodic framework. Chem Commun (Camb) 2023; 59:10004-10007. [PMID: 37522165 DOI: 10.1039/d3cc02636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
When reacted together with uranyl ions under solvo-hydrothermal conditions, a bis(pyridiniumcarboxylate) zwitterion (L) and tricarballylic acid (H3tca) give the complex [NH4]2[UO2(L)2][UO2(tca)]4·2H2O (1). The two ligands are segregated into different units, an anionic nanotubule for tca3- and a six-fold interpenetrated cationic framework with lvt topology for L. The entangled framework defines large channels which contain the square-profile nanotubules. Complex 1 has a photoluminescence quantum yield of 19% and its emission spectrum shows the superposition of the signals due to the two independent species.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, Straubing 94315, Germany
| | - Yoshihiro Koide
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yang Kim
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, Strasbourg 67083, France.
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France.
| |
Collapse
|
2
|
Kusumoto S, Atoini Y, Masuda S, Koide Y, Chainok K, Kim Y, Harrowfield J, Thuéry P. Woven, Polycatenated, or Cage Structures: Effect of Modulation of Ligand Curvature in Heteroleptic Uranyl Ion Complexes. Inorg Chem 2023; 62:7803-7813. [PMID: 37167333 DOI: 10.1021/acs.inorgchem.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Combining the flexible zwitterionic dicarboxylate 4,4'-bis(2-carboxylatoethyl)-4,4'-bipyridinium (L) and the anionic dicarboxylate ligands isophthalate (ipht2-) and 1,2-, 1,3-, or 1,4-phenylenediacetate (1,2-, 1,3-, and 1,4-pda2-), of varying shape and curvature, has allowed isolation of five uranyl ion complexes by synthesis under solvo-hydrothermal conditions. [(UO2)2(L)(ipht)2] (1) and [(UO2)2(L)(1,2-pda)2]·2H2O (2) have the same stoichiometry, and both crystallize as monoperiodic coordination polymers containing two uranyl-(anionic carboxylate) strands united by L linkers into a wide ribbon, all ligands being in the divergent conformation. Complex 3, [(UO2)2(L)(1,3-pda)2]·0.5CH3CN, with the same stoichiometry but ligands in a convergent conformation, is a discrete, binuclear species which is the first example of a heteroleptic uranyl carboxylate coordination cage. With all ligands in a divergent conformation, [(UO2)2(L)(1,4-pda)(1,4-pdaH)2] (4) crystallizes as a sinuous and thread-like monoperiodic polymer; two families of chains run along different directions and are woven into diperiodic layers. Modification of the synthetic conditions leads to [(UO2)4(LH)2(1,4-pda)5]·H2O·2CH3CN (5), a monoperiodic polymer based on tetranuclear (UO2)4(1,4-pda)4 rings; intrachain hydrogen bonding of the terminal LH+ ligands results in diperiodic network formation through parallel polycatenation involving the tetranuclear rings and the LH+ rods. Complexes 1-3 and 5 are emissive, with complex 2 having the highest photoluminescence quantum yield (19%), and their spectra show the maxima positions usual for tris-κ2O,O'-chelated uranyl cations.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Yang Kim
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Kusumoto S, Atoini Y, Masuda S, Koide Y, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Flexible Aliphatic Diammonioacetates as Zwitterionic Ligands in UO 22+ Complexes: Diverse Topologies and Interpenetrated Structures. Inorg Chem 2023; 62:3929-3946. [PMID: 36811464 DOI: 10.1021/acs.inorgchem.2c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
N,N,N',N'-Tetramethylethane-1,2-diammonioacetate (L1) and N,N,N',N'-tetramethylpropane-1,3-diammonioacetate (L2) are two flexible zwitterionic dicarboxylates which have been used as ligands for the uranyl ion, 12 complexes having been obtained from their coupling to diverse anions, mostly anionic polycarboxylates, or oxo, hydroxo and chlorido donors. The protonated zwitterion is a simple counterion in [H2L1][UO2(2,6-pydc)2] (1), where 2,6-pydc2- is 2,6-pyridinedicarboxylate, but it is deprotonated and coordinated in all the other complexes. [(UO2)2(L2)(2,4-pydcH)4] (2), where 2,4-pydc2- is 2,4-pyridinedicarboxylate, is a discrete, binuclear complex due to the terminal nature of the partially deprotonated anionic ligands. [(UO2)2(L1)(ipht)2]·4H2O (3) and [(UO2)2(L1)(pda)2] (4), where ipht2- and pda2- are isophthalate and 1,4-phenylenediacetate, are monoperiodic coordination polymers in which central L1 bridges connect two lateral strands. Oxalate anions (ox2-) generated in situ give [(UO2)2(L1)(ox)2] (5) a diperiodic network with the hcb topology. [(UO2)2(L2)(ipht)2]·H2O (6) differs from 3 in being a diperiodic network with the V2O5 topological type. [(UO2)2(L1)(2,5-pydc)2]·4H2O (7), where 2,5-pydc2- is 2,5-pyridinedicarboxylate, is a hcb network with a square-wave profile, while [(UO2)2(L1)(dnhpa)2] (8), where dnhpa2- is 3,5-dinitro-2-hydroxyphenoxyacetate, formed in situ from 1,2-phenylenedioxydiacetic acid, has the same topology but a strongly corrugated shape leading to interdigitation of layers. (2R,3R,4S,5S)-Tetrahydrofurantetracarboxylic acid (thftcH4) is only partially deprotonated in [(UO2)3(L1)(thftcH)2(H2O)] (9), which crystallizes as a diperiodic polymer with the fes topology. [(UO2)2Cl2(L1)3][(UO2Cl3)2(L1)] (10) is an ionic compound in which discrete, binuclear anions cross the cells of the cationic hcb network. 2,5-Thiophenediacetate (tdc2-) is peculiar in promoting self-sorting of the ligands in the ionic complex [(UO2)5(L1)7(tdc)(H2O)][(UO2)2(tdc)3]4·CH3CN·12H2O (11), which is the first example of heterointerpenetration in uranyl chemistry, involving a triperiodic, cationic framework and diperiodic, anionic hcb networks. Finally, [(UO2)7(O)3(OH)4.3Cl2.7(L2)2]Cl·7H2O (12) crystallizes as a 2-fold interpenetrated, triperiodic framework in which chlorouranate undulating monoperiodic subunits are bridged by the L2 ligands. Complexes 1, 2, 3, and 7 are emissive with photoluminescence quantum yields in the range of 8-24%, and their solid-state emission spectra show the usual dependence on number and nature of donor atoms.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Li ZY, Chang H, Zhao JJ, Zhang C, Wu DQ, Zhai B. Tunable structures and magnetic / optical properties of six Cd(II)-based coordination polymers by introducing different para- or dia-magnetic metal ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Chen SH, Wang HQ. Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Kusumoto S, Atoini Y, Masuda S, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Zwitterionic and Anionic Polycarboxylates as Coligands in Uranyl Ion Complexes, and Their Influence on Periodicity and Topology. Inorg Chem 2022; 61:15182-15203. [PMID: 36083206 DOI: 10.1021/acs.inorgchem.2c02426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The three zwitterionic di- and tricarboxylate ligands 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylate) (pL1), 1,1'-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-3-carboxylate) (mL1), and 1,1',1″-[(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)]tris(pyridin-1-ium-4-carboxylate) (L2) have been used as ligands to synthesize a series of 15 uranyl ion complexes involving various anionic coligands, in most cases polycarboxylates. [(UO2)2(pL1)2(cbtc)(H2O)2]·10H2O (1, cbtc4- = cis,trans,cis-1,2,3,4-cyclobutanetetracarboxylate) is a discrete, dinuclear ring-shaped complex with a central cbtc4- pillar. While [UO2(pL1)(NO3)2] (2), [UO2(pL1)(OAc)2] (3), and [UO2(pL1)(HCOO)2] (4) are simple chains, [(UO2)2(mL1)(1,3-pda)2] (5, 1,3-pda2- = 1,3-phenylenediacetate) is a daisy chain and [UO2(pL1)(pdda)]3·10H2O (6, pdda2- = 1,2-phenylenedioxydiacetate) is a double-stranded, ribbon-like chain. Both [UO2(pL1)(pht)]·5H2O (7, pht2- = phthalate) and [(UO2)3(mL1)(pht)2(OH)2] (8) crystallize as diperiodic networks with the sql topology, the latter involving hydroxo-bridged trinuclear nodes. [(UO2)2(pL1)(c/t-1,3-chdc)2] (9, c/t-1,3-chdc2- = cis/trans-1,3-cyclohexanedicarboxylate) and [UO2(pL1)(t-1,4-chdc)]·1.5H2O (10, t-1,4-chdc2- = trans-1,4-cyclohexanedicarboxylate) are also diperiodic, with the V2O5 and sql topologies, respectively. Both [(UO2)2(mL1)(c/t-1,4-chdc)2] (11) and [(UO2)2(pL1)(1,2-pda)2] (12, 1,2-pda2- = 1,2-phenylenediacetate) crystallize as diperiodic networks with hcb topology, and they display threefold parallel interpenetration. [HL2][(UO2)3(L2)(adc)3]Br (13, adc2- = 1,3-adamantanedicarboxylate) contains a very corrugated hcb network with two different kinds of cells, and the uncoordinated HL2+ molecule associates with the coordinated L2 to form a capsule containing the bromide anion. [(UO2)2(pL1)(kpim)2] (14, kpim2- = 4-ketopimelate) is a three-periodic framework with pL1 molecules pillaring fes diperiodic subunits, whereas [(UO2)2(L2)2(t-1,4-chdc)](NO3)1.7Br0.3·6H2O (15), the only cationic complex in the series, is a triperiodic framework with dmc topology and t-1,4-chdc2- anions pillaring fes diperiodic subunits. Solid-state emission spectra and photoluminescence quantum yields are reported for all complexes.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Kusumoto S, Atoini Y, Masuda S, Koide Y, Kim JY, Hayami S, Kim Y, Harrowfield J, Thuéry P. Varied role of organic carboxylate dizwitterions and anionic donors in mixed-ligand uranyl ion coordination polymers. CrystEngComm 2022. [DOI: 10.1039/d2ce01187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two organic dizwitterions were combined with various anionic donors to generate a series of five uranyl ion complexes crystallizing as mono- or diperiodic coordination polymers, with separation into two distinct networks in one case.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jee Young Kim
- Department of Food and Nutrition, Kosin University, 194 Wachiro, Yongdo-Gu, Busan 49104, South Korea
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|