1
|
Zhang C, Deng X, Tan H, Zhang X, Wu J, Zhao Y, Zhao L. Water-stable Eu(III) coordination polymer-based ratiometric fluorescence sensor integrated with smartphone for onsite monitoring of doxycycline hydrochloride in milk. Mikrochim Acta 2025; 192:226. [PMID: 40074871 DOI: 10.1007/s00604-025-07081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
The widespread misuse of doxycycline hydrochloride (Dox) in livestock farming has necessitated the development of rapid and reliable methods for monitoring its residues in food products. Herein, a water-stable europium coordination polymer-Eu(C2O4)1.5(H2O)ₙ (Eu-CP) with a layered structure was synthesized via a one-step hydrothermal approach. Leveraging its dual-emission properties (455 nm ligand-centered blue emission and 615 nm Eu(III)-based red emission), we engineered a ratiometric fluorescence sensor (I₆₁₅/I₄₅₅) for Dox detection. The sensing mechanism involves synergistic effects of the antenna effect and Dox@Eu-CP complexation, enabling selective Dox recognition with a wide linear range (10-100 μM) and a low detection limit (0.46 μM, S/N = 3). To facilitate onsite analysis, a smartphone-integrated platform was developed, translating the Dox concentration-dependent color transition (blue → red) into quantifiable R/G values via a custom Android application. Practical applicability was demonstrated in milk samples, achieving recoveries of 82.4-119.4% (fluorescence) and 87.8-113.3% (smartphone) with RSD < 5%. This work pioneers the integration of lanthanide coordination polymers with portable digital detection, offering a green and visual strategy for antibiotic residue monitoring in food safety.
Collapse
Affiliation(s)
- Cancan Zhang
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Xiaochen Deng
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Huanhuan Tan
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Xiaoxin Zhang
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Jiao Wu
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Yuyang Zhao
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China
| | - Lingyan Zhao
- College of Qian'an, North China University of Science and Technology, Qian'an, Hebei, 064400, China.
| |
Collapse
|
2
|
Zhang X, Wang SQ, Zhang Q, Li H, Yu R. "On-On-Off" Recyclable Fluorescence Battery for Direct and Selective Detection of Glyphosate and Cu 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13256-13264. [PMID: 38860683 DOI: 10.1021/acs.langmuir.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Residues of environmental organophosphorus pesticides (OPs) will seriously endanger human health. Most reported OP sensors utilized the restrictions capacity of OPs on the catalytic capacity of acetylcholinesterase (AChE) to acetylthiocholine chloride (ATCh), which suffers from high costs, weak stability, long reaction time, and unrecyclable. Herein, a recyclable strategy was proposed for selective and sensitive detection of glyphosate (Gly). The weak fluorescence of UIO-66-NH2 at 450 nm was enhanced almost 10-fold after reacting with Gly because of the rotation-restricted emission enhancement mechanism. Moreover, inspired by the process of charging and discharging the batteries, we introduced Cu2+ to chelate with Gly. Because of the strong chelation between Cu2+ and Gly, the Gly was removed from UIO-66-NH2, which resulted in the quenching of fluorescence intensity and making UIO-66-NH2 recycle. This method proposed is fast, recyclable, easily conducted, and with a low 0.33 μM LOD in dd H2O based on 3σ/S. The recovery rates of Gly in tap water ranged from 93.07 to 104.35% within a satisfied 7.75% RSD. The Cu2+ LOD is 0.01 mM based on 3σ/S and 94.37-118.34% recovery rates within 6.48% RSD in tap water. We believe that the findings in this work provide a meaningful and promising strategy to detect Gly and Cu2+ in real samples. This sensor first successfully achieves the recycling use of the material in OP fluorescence detection, which greatly decreases the cost of the designed sensor and reduces the possibility of secondary pollution to the environment, broadens a new circulation dimension of fluorescence detection methods in detecting OPs, and has the potential to remove glyphosate from water. It also provides a method to utilize functionalized metal-organic frameworks to establish various sensors.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Su Qin Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Qianya Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Hongbo Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
3
|
Wang X, Chen H, Zhang J, Zhou H, Meng X, Wang N, Fang Y, Cui B. Photoelectrochemical sensor for the detection of Escherichia coli O157:H7 based on TPA-NO 2 and dual-functional polythiophene films. Food Chem 2024; 441:138299. [PMID: 38176143 DOI: 10.1016/j.foodchem.2023.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
The detection of Escherichia coli (E. coli) is of great significance for the environment and human health. Herein, a photoelectrochemical (PEC) detection strategy based on molecularly imprinted polymers (MIPs) was proposed for the sensitive detection of E. coli. 4,4',4″-Trinitrotriphenylamine (TPA-NO2) was prepared using a simple nitration reaction. Subsequently, MIP films were polymerized on the surface of TPA-NO2 using 1,3-dihydrothieno[3,2-d]pyrimidine-2,4-dione as the functional monomer with the dual functions of specific recognition and sensitization. The linear range was 10-108 CFU/mL and the limit of detection was 10 CFU/mL. It showed favorable recoveries in real sample tests of milk, orange juice and tomato. Additionally, the ability of functional monomers to bind excellently with E. coli was verified using molecular docking techniques. This research provided broader possibilities for constructing MIPs-PEC sensors and analyzing the interaction mechanism between E. coli and functional monomers.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huiyi Chen
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jihui Zhang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hong Zhou
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China
| | - Na Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Chen H, Ma R, Zhang Y, Zhang T, Jing B, Xia Z, Yang Q, Xie G, Chen S. A Stable Triphenylamine-Based Zn(II)-MOF for Photocatalytic H 2 Evolution and Photooxidative Carbon-Carbon Coupling Reaction. Inorg Chem 2023; 62:7954-7963. [PMID: 37154624 DOI: 10.1021/acs.inorgchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Efficient charge transfer has always been a challenge in heterogeneous MOF-based photoredox catalysis due to the poor electrical conductivity of the MOF photocatalyst, the toilless electron-hole recombination, and the uncontrollable host-guest interactions. Herein, a propeller-like tris(3'-carboxybiphenyl)amine (H3TCBA) ligand was synthesized to fabricate a 3D Zn3O cluster-based Zn(II)-MOF photocatalyst, Zn3(TCBA)2(μ3-H2O)H2O (Zn-TCBA), which was applied to efficient photoreductive H2 evolution and photooxidative aerobic cross-dehydrogenation coupling reactions of N-aryl-tetrahydroisoquinolines and nitromethane. In Zn-TCBA, the ingenious introduction of the meta-position benzene carboxylates on the triphenylamine motif not only promotes Zn-TCBA to exhibit a broad visible-light absorption with a maximum absorption edge of 480 nm but also causes special phenyl plane twists with dihedral angles of 27.8-45.8° through the coordination to Zn nodes. The semiconductor-like Zn clusters and the twisted TCBA3- antenna with multidimensional π interaction sites facilitate photoinduced electron transfer to render Zn-TCBA a good photocatalytic H2 evolution efficiency of 27.104 mmol·g-1·h-1 in the presence of [Co(bpy)3]Cl2 under visible-light illumination, surpassing many non-noble-metal MOF systems. Moreover, the positive enough excited-state potential of 2.03 V and the semiconductor-like characteristics of Zn-TCBA endow Zn-TCBA with double oxygen activation ability for photocatalytic oxidation of N-aryl-tetrahydroisoquinoline substrates with a yield up to 98.7% over 6 h. The durability of Zn-TCBA and the possible catalytic mechanisms were also investigated by a series of experiments including PXRD, IR, EPR, and fluorescence analyses.
Collapse
Affiliation(s)
- Hanhua Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Ren Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Tingting Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Biyun Jing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|