1
|
Fan Y, Wang Y, Bai Y, Zou B, Zeng R. High-Efficiency Luminescence of Mn 2+-Doped Two-Dimensional Hybrid Metal Halides and X-Ray Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:713. [PMID: 40423103 DOI: 10.3390/nano15100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Mn2+ doping in metal halide perovskites enables host-to-dopant energy transfer, creating new emission pathways for optoelectronic applications. However, achieving high-efficiency luminescence in 2D systems remains challenging. We synthesized Mn2+-doped 2D PEA2CdCl4 via the hydrothermal method, characterizing its properties through PL spectroscopy, quantum yield measurements, and DFT calculations. Flexible films were fabricated using PDMS and PMMA matrices. The 15% Mn2+-doped crystal showed orange-red emission with 90.85% PLQY, attributed to efficient host-to-Mn2+ energy transfer and 4T1→6A1 transition. Prototype LEDs exhibited stable emission, while PDMS films demonstrated flexibility and PMMA films showed excellent X-ray imaging capability. This work demonstrates Mn2+ doping as an effective strategy to enhance luminescence in 2D perovskites, with potential applications in flexible optoelectronics and X-ray scintillators.
Collapse
Affiliation(s)
- Yue Fan
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yingyun Wang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yunlong Bai
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Fateev SA, Kozhevnikova VY, Kuznetsov KM, Belikova DE, Khrustalev VN, Goodilin EA, Tarasov AB. Optical and scintillation properties of hybrid manganese(II) bromides with formamidinium and acetamidinium cations. Dalton Trans 2024; 53:2722-2730. [PMID: 38226672 DOI: 10.1039/d3dt03452f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In recent years, hybrid manganese(II) halides (HMHs) have attracted wide attention due to their impressive optical properties, low toxicity, and facile synthetic processibility. Being effective reabsorption-free phosphors, these compounds demonstrate the potential to be used as low-cost solution-processable scintillators. However, most of the HMHs studied to date contain bulk organic cations and, as a result, are characterized by low density and low X-ray stopping power. For this reason, we studied manganese(II) bromides with compact organic cations such as formamidinium (FA+) and acetamidinium (AcA+). In particular, we synthesized four new phases, two of which are characterized by octahedral coordination of manganese ions ((FA)MnBr3 and (AcA)MnBr3) and red emission, whereas the other two have tetrahedrally coordinated Mn2+ ions ((FA)3MnBr5 and (AcA)2MnBr4) and green emission. Photoluminescence (PL) and radioluminescence measurements demonstrated high PL quantum yields and reasonable scintillation light yields of acetamidinium-based compounds. In addition, unlike most known HMH-based scintillators, the discovered materials have a relatively high density due to the small fraction of the volume occupied by organic cations, so their X-ray attenuation coefficients are comparable to the well-known oxide scintillators.
Collapse
Affiliation(s)
- Sergey A Fateev
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
| | | | - Kirill M Kuznetsov
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
| | - Daria E Belikova
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
| | - Victor N Khrustalev
- Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
- N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prosp., 119991, Moscow, Russia
| | - Eugene A Goodilin
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia
| | - Alexey B Tarasov
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia
| |
Collapse
|
3
|
Zhang G, Yang C, Wei Q, Long J, Shen X, Chen Y, Ke B, Liang W, Zhong X, Zou B. Sb 3+-Doped Indium-Based Metal Halide (Gua) 3InCl 6 with Efficient Yellow Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3841-3852. [PMID: 38207013 DOI: 10.1021/acsami.3c15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In recent years, low-dimensional organic-inorganic hybrid metal halides (OIHMHs) have shown excellent photophysical properties due to their quantum structure, adjustable energy levels, and energy transfer between inorganic and organic components, which have attracted extensive attention from researchers. Herein, we synthesize a zero-dimensional (0D) OIHMH, Sb3+:(Gua)3InCl6, by introducing Sb3+ into (Gua)3InCl6, which undergoes a significant enhancement of the emission peak at 580 nm with the photoluminescence quantum yield (PLQY) boosted from 17.86 to 95.72% when excited at 340 nm. This boost in photoluminescence of the doped sample was studied by combining ultrafast femtosecond transient absorption, temperature-dependent photoluminescence (PL) spectra, and density functional theory (DFT) calculation, revealing the process of self-trapped exciton (STE) recombination to emit light at both Sb and In sites in this 0D structure simultaneously. This material with the lowest dark STE level at the In site for emission in the undoped sample can amazingly yield very strong emission in the doped sample, which has never been observed before. Finally, we tested its application in a photoelectric device. This work not only helps to gain a deeper understanding of the formation of STEs in In-based halides but also plays a certain guiding role in the design of new luminescent materials.
Collapse
Affiliation(s)
- Guolun Zhang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chengzhi Yang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiangjie Long
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaodong Shen
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yijun Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bao Ke
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Weizheng Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xianci Zhong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Kuruppu UM, Rahman MA, Gangishetty MK. Unraveling the Origin of an Unusual Shift in the Electroluminescence of 1D CsCu 2I 3 Light-Emitting Diodes. ACS NANO 2024; 18:1647-1657. [PMID: 38166382 DOI: 10.1021/acsnano.3c09824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lead-free low-dimensional copper-based metal halides are promising luminescent materials for broadband LEDs owing to their broad self-trapped exciton (STE) emission. However, recently, in 1D CsCu2I3, a discrepancy between their electroluminescence (EL) and photoluminescence (PL) has been observed. As a result, the overall output color from LEDs is significantly different than the anticipated emission. To unveil the origin of this discrepancy, here, we provide comprehensive analyses and show that the shift in the EL is caused neither by any structural/optical interactions between CsCu2I3 and electron transport layers (ETL) nor by the degradation of 1D CsCu2I3. Instead, it depends on the carrier imbalance on CsCu2I3, mainly due to the difference in the electron mobility of the ETLs and the electron density on the CsCu2I3 layer. By varying the ETLs, different colored 1D CsCu2I3 LEDs with peaks at 556, 590, and 647 nm are fabricated, and a maximum luminance of over 2000 cd/m2 is achieved for a 556 nm LED. Further, by limiting the electron mobility and injection to 1D CsCu2I3 using an insulating LiF layer at the CsCu2I3/ETL interface, more red-shifted LEDs are achieved confirming the critical role of electron density on the EL characteristics of 1D CsCu2I3.
Collapse
Affiliation(s)
- Udara M Kuruppu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mohammad A Rahman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mahesh K Gangishetty
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
5
|
Panda DP, Swain D, Raghunathan R, Sundaresan A. Photophysical Properties of S = 5/2 Zigzag-1D (2-Bromoethylammonium) 3MnBr 5 Antiferromagnet. J Phys Chem Lett 2023; 14:9531-9538. [PMID: 37852276 DOI: 10.1021/acs.jpclett.3c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
It has been challenging to design multifunctional lead-free organic-inorganic hybrid halides that can exhibit fascinating magnetic and photoluminescence properties since the dimensionality of the compounds has a contrasting impact on them. In this context, our newly synthesized compound (2-bromoethylammonium)3MnBr5 (BEAMBr) crystallizes in the monoclinic C2/c space group with corner-sharing zigzag 1D chains of MnBr6 distorted octahedra. Intriguingly, it exhibits a long-range antiferromagnetic ordering at low temperature (∼2.5 K) along with a typical low-dimensional broad magnetic susceptibility hump. The magnetic properties modeled by the exact diagonalization approach indicate strong intrachain and weak interchain interactions with J1 = -50.1 K, J2 = -13.0 K, and J' = -1.25 K, respectively, suggesting excellent one-dimensionality. In addition, BEAMBr displays orange-red emission with a photoluminescence quantum yield of 15.2%. Interestingly, electron-phonon coupling was observed in this soft distorted compound with coupling strength γLO = 128.3 meV, confirmed from the analysis of temperature-dependent emission line width broadening and Raman spectra.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - Rajamani Raghunathan
- UGC-DAE Consortium for Scientific Research, Indore 452001, Madhya Pradesh, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
6
|
Panda DP, Swain D, Sarkar S, Sundaresan A. Halogen Bond Induced Structural and Photophysical Properties Modification in Organic-Inorganic Hybrid Manganese Halides. J Phys Chem Lett 2023; 14:4211-4218. [PMID: 37115497 DOI: 10.1021/acs.jpclett.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The role of halogen bonding in organic-inorganic hybrid (OIH) halides was seldom investigated despite its potential to enhance the stability of the compound. In this context, we have synthesized (2-methylbenzimidazolium)MnCl3(H2O)·H2O (compound 1) crystallizing in a monoclinic space group P21/c with a 1D infinite chain of edge shared Mn octahedra. In contrast, the chloro-substituted derivative (5-chloro-2-methylbenzimidazolium)2MnCl4 (compound 2) exhibits 0D Mn tetrahedra with a triclinic P1̅ structure. This structural modification from 1D Mn octahedra to 0D Mn tetrahedra involves a unique type-II halogen bonding between organic chlorine (C-Cl) and inorganic chloride (Cl-Mn) ions. Compound 1 exhibits red emission, whereas compound 2 demonstrates dual-band emission, resulting from energy transfer from the organic amine to Mn centers. To rationalize this interesting modulation in structure and photophysical properties, the role of halogen bonding is explored in terms of quantitative electron density analysis and intermolecular interaction energies.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - Sounak Sarkar
- Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
7
|
Panda DP, Swain D, Rohj RK, Sarma DD, Sundaresan A. Elucidating Structure-Property Correlation in Perovskitoid and Antiperovskite Piperidinium Manganese Chloride. Inorg Chem 2023; 62:3202-3211. [PMID: 36744767 DOI: 10.1021/acs.inorgchem.2c04173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the world of semiconductors, organic-inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order-disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic-inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure-property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Rohit Kumar Rohj
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|