1
|
Zheng Z, Jiang S, Chen X, Liu H, Liu Y, Dong Y, Sun X, Yang G. A tetranuclear Pr-W heterometal cluster-imbedded antimotungstate for the catalytic synthesis of benzimidazoles. Dalton Trans 2025. [PMID: 40401494 DOI: 10.1039/d5dt00386e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A novel organic-inorganic Pr-W heterometal cluster-imbedded antimotungstate, [(CH3)2NH2]4Na20.5{[(OAc)Pr4W6O12(tar)3](SbW9O33)4(H2O)10}Cl0.5·ca. 40.3H2O (Pr-1), was synthesized via a one-step in situ assembly strategy. Pr-1 features a distinctive tetranuclear Pr-based organic-inorganic hybrid structure stabilized by polycarboxylic acid ligands, which efficiently regulate the hydrolysis of Pr3+ to facilitate the assembly of Pr-W heterometallic clusters. Notably, this structure includes abundant Lewis acid sites from Pr3+, making it highly promising for catalytic applications. Pr-1 has been successfully demonstrated as an environmentally friendly, heterogeneous catalyst in synthesizing benzimidazoles from o-phenylenediamines and benzaldehydes. The high catalytic activity, excellent structural stability, and recyclability over five cycles highlight the potential of Pr-1 as an efficient and sustainable catalyst for N-containing heterocyclic organic synthesis.
Collapse
Affiliation(s)
- Zhijian Zheng
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| | - Song Jiang
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| | - Xuejiao Chen
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| | - Haoqi Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| | - Yufeng Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| | - Yayu Dong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, 330013, China
| | - Xiaopeng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China.
| | - Guoping Yang
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
2
|
Yang G, Liu H, Zhang S, Yang Y, Li K, Li H, Liu Y, Zang H. Mixed Carboxylate Ligands Bridging Tetra-Pr 3+-Encapsulated Antimonotungstate: Syntheses, Structure, and Catalytic Activity for Imidazoles Synthesis. Inorg Chem 2024. [PMID: 39546325 DOI: 10.1021/acs.inorgchem.4c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multinuclear Pr-containing antimonotungstate [Pr4(H2O)10W6O13(mal)2(OAc)(B-α-SbW9O33)4]21- (Pr-1, mal = malate anion, OAc = acetate anion), bridged by organic carboxylic acid, was synthesized through a one-pot assembly reaction and structurally characterized. Pr-1 is composed of four [B-α-SbW9O33]9- fragments fused together by an organic-inorganic hybrid central [Pr4(H2O)10W6O13(mal)2(OAc)]15+ cluster core through 24 μ2-O atoms. Notably, the central cluster comprises unprecedented decanuclear Pr4(H2O)10W6O13 jointly decorated by two types of carboxylic acid ligands. This integration of rare earth-containing antimonotungstate with mixed organic carboxylate ligands is very rare in POMs chemistry. Pr-1 exhibits excellent catalytic activity in the cyclo-condensation reaction involving benzil, aldehyde, and NH4OAc. A series of 2,4,5-trisubstituted imidazoles were synthesized in remarkable yields using iPrOH as a green solvent.
Collapse
Affiliation(s)
- Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Haoqi Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Shuhan Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Yijin Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Ke Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Hailou Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yufeng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Lu C, Tang Z, Wang D, Chen L, Zhao J. Advances in polyoxometalate-based electrochemical sensors in the last three years. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5133-5145. [PMID: 39007918 DOI: 10.1039/d4ay01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a famous subclass of metal-oxide cluster materials, polyoxometalates (POMs) feature variable architectures, reversible multi-electron transport capability, catalytic activity, and redox capacity. These attributes endow POMs with great potential as promising electrode materials in electrochemical sensors (ECSs). Up to now, POM-based ECSs have been passionately studied, and diverse POM-based redox ECSs, aptasensors and immunosensors have emerged. And these POM-based ECSs generally demonstrate fast response, low detection limit, strong selectivity and high antijamming capability. This review mainly focuses on the remarkable advancement of POM-based ECSs in environmental monitoring, food safety and biomedicine from 2021, aiming to furnish theoretical insights that inform the design and development of innovative sensors.
Collapse
Affiliation(s)
- Changyuan Lu
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Zhang Y, Cheng Z, Zeng B, Jiang J, Zhao J, Wang M, Chen L. Recent research progress of selenotungstate-based biomolecular sensing materials. Dalton Trans 2024; 53:10805-10813. [PMID: 38836698 DOI: 10.1039/d4dt01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhendong Cheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Miao Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Liu Y, Liu G, Zeng B, Li Y, Chen L, Zhao J. 2,5-Thiophenedicarboxylic Acid Bridging Hexameric Ce III-Substituted Selenotungstate and Its Application for Detecting Mucin 1. Inorg Chem 2024; 63:7858-7868. [PMID: 38634470 DOI: 10.1021/acs.inorgchem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The development of polyoxometalate chemistry not only is derived from the continuous discovery of novel polyoxometalates (POMs) but also stems from the exploitation of their new functionalities. In this work, we obtained a rigid sulfur-containing heterocyclic ligand-linking aggregate [N(CH3)4]10Na6H6[Ce8(H2O)26W8(HTDA)2(TDA)2O20][SeW4O18]2[SeW9O33]4·112H2O (1) (H2TDA = 2,5-thiophenedicarboxylic acid). Its polyanionic unit consists of one [Ce4(H2O)13W4O10(HTDA)(TDA)O10]18+ cluster and two kinds of Keggin-type [SeW4O18] and [SeW9O33] segments. It is noteworthy that H2TDA ligands not only work as connectors to link two symmetrical {[Ce4(H2O)13W4(HTDA)(TDA)O10][SeW4O18][SeW9O33]2}11- units but also function as ornaments to graft to the polyanionic backbone. Furthermore, 1 and 3,4-ethylenedioxythiophene (EDOT) were deposited on the glassy carbon electrode (GCE) by the electropolymerization (EPM) method, resulting in a 1-poly(3,4-ethylenedioxythiophene) (1-PEDOT) composite film, which can provide sufficient binding sites to immobilize Au nanoparticles (Au NPs). Hereafter, the Au NPs-immobilized 1-PEDOT modified electrode (Au/1-PEDOT/GCE) was used to construct an electrochemical aptasensor to detect mucin 1, showing a low detection limit of 29.5 fM in the Tris solution. This work not only demonstrates that rigid heterocyclic ligands are beneficial for the creation of novel rare-earth-substituted selenotungstate hybrids but also provides more enlightenment for POM-based materials used for electrochemical detection of cancer markers.
Collapse
Affiliation(s)
- Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
6
|
Niu B, Zhang M, Yan L, Yu A, Ma P, Wang J, Niu J. Two Tetra-Nuclear Ln-Substituted Prazine Dicarboxylic Acid-Functionalized Selenotungstates with Catalytic Oxidation of Thioether Properties. Inorg Chem 2023. [PMID: 37996253 DOI: 10.1021/acs.inorgchem.3c03109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luting Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|